Simulation of Dislocation Accumulation in Impurity Doped-ULSI Cells and Electric Characteristic Evaluations

2016 ◽  
Vol 10 (2) ◽  
pp. 195-200
Author(s):  
Michihiro Sato ◽  
◽  
Yosuke Takahashi ◽  
◽  

The performance of semiconductor devices has improved on introducing increasing refinements to the structures of these devices. This has created various problems at the atomic level. In particular, the presence of dislocations, a type of crystallographic defect, within semiconductor devices poses a major problem. Dislocations accumulated within the device obstruct the movement of electrons and adversely affect the electrical characteristics of the device. However, previous investigations have not sufficiently clarified the relationship between accumulated dislocations and the electrical characteristics of a semiconductor. In this study, we focus on dislocations produced in the fabrication of an impurity-doped ultra-large-scale integration (ULSI) device and, based on a crystal plasticity analysis, perform a simulation of the accumulation of dislocations within the device during the cooling process. We establish an analytical system by which the obtained information on dislocations is applied to a device simulator, in order to evaluate the electrical characteristics by considering the accumulation of dislocations. We investigate the effects that dislocation density and density distribution have on the characteristic current-voltage curve of the device.

1992 ◽  
Vol 260 ◽  
Author(s):  
Y. -T. Shy ◽  
S. P. Murarka ◽  
A. R. Sitaram ◽  
P.-J. Ding ◽  
W. A. Lanford

ABSTRACTCopper is being investigated for application as multi-level interconnection metal in silicon ultra-large-scale integration (ULSI). On the other hand, COSi2 is being tested for application as contacts in sub-half micron ULSI circuits. Copper will thus be used on COSi2 to bring the electrical connection to the outside world. In this investigation we have therefore studied the interactions of copper with CoSi2 employing sheet resistance measurements (four-point probe), Rutherford back scattering (RBS), and X-ray diffraction (XRD). In addition the stability of the Schottky diodes, n-Si/CoS2/Cu, has been investigated as a function of the heat treatment in the range of room temperature to 600° C in argon-3% hydrogen mixture gas ambient. Both the measurements of the analytical and electrical characteristics show that Cu on n-Si/CoSi2 is stable at least up to a 30 minutes anneal at 600°C in argon-3% hydrogen medium. These results will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document