Switching Model Construction and Stability Analysis for Nonlinear Systems

Author(s):  
Hiroshi Ohtake ◽  
◽  
Kazuo Tanaka

This paper presents switching model construction and stability analysis for a class of nonlinear systems. A switching fuzzy model newly developed in this paper is employed to represent the dynamics of a nonlinear system. A key feature of the switching fuzzy model construction is to find the so-called minimum distance sector by solving a nonlinear optimization problem. Next, we discuss the stability of a switching fuzzy model. To take advantage of the switching fuzzy model, we introduce a piecewise Lyapunov function that mirrors its structure. We show that the piecewise Lyapunov function approach provides less conservative results for the typical quadratic Lyapunov function approach. Illustrative examples demonstrate the utility of the switching model construction and the stability analysis.

2013 ◽  
Vol 341-342 ◽  
pp. 668-673
Author(s):  
Yi Min Li ◽  
Yuan Yuan Li

This paper studies the stability analysis of discrete time-varying system with parameter uncertainties and disturbances. The system under consideration is subject to time-varying non-bounded parameter uncertainties in both the state and measured output matrices. To facilitate the stability analysis, the T-S fuzzy model is employed to represent the discrete-time nonlinear system. A fuzzy observer is used to guarantee the Lyapunov stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties. The control and observer matrices can be obtained by directly solving a set of linear matrix inequality (LMI) via the existing LMI optimization techniques. Finally, an example is provided to demonstrate the effectiveness of the proposed approach.


Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


Sign in / Sign up

Export Citation Format

Share Document