scholarly journals Actuator Saturated Fuzzy Controller Design for Interval Type-2 Takagi-Sugeno Fuzzy Models with Multiplicative Noises

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.

2003 ◽  
Vol 125 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Wen-Jer Chang

In this paper, a fuzzy control design method is be developed for the plant model whose structure is represented by the Takagi-Sugeno fuzzy model. In each rule of the Takagi-Sugeno fuzzy model, the system is characterized by linear dynamics given in the controllability canonical form. Replacing the Lyapunov inequality with a Lyapunov equation for stability analysis, the proposed method will make use of the inverse solution of Lyapunov equations to obtain a common Lyapunov function for all the subsystems. Based on this solution, the fuzzy controller can be constructed by using the parallel distributed compensation technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Linna Zhou ◽  
Qianjin Wang ◽  
Xiaoping Ma ◽  
Chunyu Yang

This paper investigates the problem of fuzzy controller design for nonaffine-in-control singularly perturbed switched systems (NCSPSSs). First, the NCSPSS is approximated by Takagi-Sugeno (T-S) models which include not only state but also control variables in the premise part of the rules. Then, a dynamic state feedback controller design method is proposed in terms of linear matrix inequalities. Under the controller, stability bound estimation problem of the closed-loop system is solved. Finally, an example is given to show the feasibility and effectiveness of the obtained methods.


2007 ◽  
Vol 18 (07) ◽  
pp. 1095-1105 ◽  
Author(s):  
XINGWEN LIU ◽  
XIN GAO

Studied in this paper is the control problem of hyperchaotic systems. By combining Takagi–Sugeno (T–S) fuzzy model with parallel distributed compensation design technique, we propose a delay-dependent control criterion via pure delayed state feedback. Because the result is expressed in terms of linear matrix inequalities (LMIs), it is quite convenient to check in practice. Based on this criterion, a procedure is provided for designing fuzzy controller for such systems. This method is a universal one for controlling continuous hyperchaotic systems. As illustrated by its application to hyperchaotic Chen's system, the controller design is quite effective.


2019 ◽  
Vol 41 (15) ◽  
pp. 4218-4229 ◽  
Author(s):  
Alireza Navarbaf ◽  
Mohammad Javad Khosrowjerdi

In this paper, a new design approach to construct a fault-tolerant controller (FTC) with fault estimation capability is proposed using a generalized Takagi-Sugeno (T-S) fuzzy model for a class of nonlinear systems in the presence of actuator faults and unknown disturbances. The generalized T-S fuzzy model consists of some local models with multiplicative nonlinear terms that satisfy Lipschitz condition. Besides covering a very wide range of nonlinear systems with a smaller number of local rules in comparison with the conventional T-S fuzzy model and hence having less computational burden, the existence of the multiplicative nonlinear term solves the uncontrollability issues that the other generalized T-S fuzzy models with additive nonlinear terms dealt with. A state/fault observer designed for the considered generalized T-S fuzzy model and then, a dynamic FTC law based on the estimated fault information is proposed and sufficient design conditions are given in terms of linear matrix inequalities (LMIs). It can be shown that the number of LMIs are less than that of previously proposed methods and then feasibility of our method is more likely. The effectiveness of the proposed FTC approach is verified using a nonlinear mass-spring-damper system.


2020 ◽  
pp. 1-19
Author(s):  
Ritu Rani De (Maity) ◽  
Rajani K. Mudi ◽  
Chanchal Dey

This paper focuses on the development of a stable Mamdani type-2 fuzzy logic based controller for automatic control of servo systems. The stability analysis of the fuzzy controller has been done by employing the concept of Lyapunov. The Lyapunov approach results in the derivation of an original stability analysis that can be used for designing the rule base of our proposed online gain adaptive Interval Type-2 Fuzzy Proportional Derivative controller (IT2-GFPD) for servo systems with assured stability. In this approach a Quadratic positive definite Lyapunov function is used and sufficient stability conditions are satisfied by the adaptive type-2 fuzzy logic control system. Illustrative simulation studies with linear and nonlinear models as well as experimental results on a real-time servo system validate the stability and robustness of the developed intelligent IT2-GFPD. A comparative performance study of IT2-GFPD with other controllers in presence of noise and disturbance also proves the superiority of the proposed controller.


Automatika ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 49-63
Author(s):  
Mohammad Sarbaz ◽  
Iman Zamani ◽  
Mohammad Manthouri ◽  
Asier Ibeas

Sign in / Sign up

Export Citation Format

Share Document