A Study on the Possibility of Applying Subliminal Visual Cue for Guiding Subject’s Attention

Author(s):  
Hiroshi Takahashi ◽  
◽  
Hirohiko Honda

This paper presents a new warning method for increasing drivers’ sensitivity for recognizing hazardous factors in the driving environment. The method is based on a subliminal effect. In this study, the presentation of a visual cue at a lower contrast ratio than that of the background scenery was investigated as subliminal visual information instead of flashing information quickly. This method was chosen in consideration of its use in real-world driving situations where changes in ambient brightness are among the biggest visual disturbances experienced by drivers. Accordingly, it is necessary to have amethod that is applicable in the context of dynamic changes in brightness. The results of many experiments performed with a threedimensional head-mounted display show that the response time for detecting a flashing mark tended to decrease when a subliminal mark was shown in advance. A priming effect is observed for subliminal visual information. This paper also proposes a scenario for implementing this method in real vehicles.

2020 ◽  
Author(s):  
Han Zhang ◽  
Nicola C Anderson ◽  
Kevin Miller

Recent studies have shown that mind-wandering (MW) is associated with changes in eye movement parameters, but have not explored how MW affects the sequential pattern of eye movements involved in making sense of complex visual information. Eye movements naturally unfold over time and this process may reveal novel information about cognitive processing during MW. The current study used Recurrence Quantification Analysis (Anderson, Bischof, Laidlaw, Risko, & Kingstone, 2013) to describe the pattern of refixations (fixations directed to previously-inspected regions) during MW. Participants completed a real-world scene encoding task and responded to thought probes assessing intentional and unintentional MW. Both types of MW were associated with worse memory of the scenes. Importantly, RQA showed that scanpaths during unintentional MW were more repetitive than during on-task episodes, as indicated by a higher recurrence rate and more stereotypical fixation sequences. This increased repetitiveness suggests an adaptive response to processing failures through re-examining previous locations. Moreover, this increased repetitiveness contributed to fixations focusing on a smaller spatial scale of the stimuli. Finally, we were also able to validate several traditional measures: both intentional and unintentional MW were associated with fewer and longer fixations; Eye-blinking increased numerically during both types of MW but the difference was only significant for unintentional MW. Overall, the results advanced our understanding of how visual processing is affected during MW by highlighting the sequential aspect of eye movements.


1987 ◽  
Vol 65 (3) ◽  
pp. 899-906 ◽  
Author(s):  
Edward J. Hass ◽  
Christopher W. Holden

It has been suggested that the hypnotic state results in a greater relative activation or priming of the right cerebral hemisphere than of the left hemisphere. The experiment reported here employed hypnosis to produce such a priming effect in a visual-detection task. Subjects were required to detect the presence or absence of a gap in outline squares presented either to the left visual field or right visual field, with response time as the primary dependent measure. Those subjects who were hypnotized produced a 50-msec. response time difference favoring squares presented to the left visual field whereas control subjects and simulator-control subjects showed no lateral asymmetries. The result is classified as a material-nonspecific priming effect and discussed with regard to the nature of processing resources.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


2006 ◽  
Vol 95 (6) ◽  
pp. 3596-3616 ◽  
Author(s):  
Eiji Hoshi ◽  
Jun Tanji

We examined neuronal activity in the dorsal and ventral premotor cortex (PMd and PMv, respectively) to explore the role of each motor area in processing visual signals for action planning. We recorded neuronal activity while monkeys performed a behavioral task during which two visual instruction cues were given successively with an intervening delay. One cue instructed the location of the target to be reached, and the other indicated which arm was to be used. We found that the properties of neuronal activity in the PMd and PMv differed in many respects. After the first cue was given, PMv neuron response mostly reflected the spatial position of the visual cue. In contrast, PMd neuron response also reflected what the visual cue instructed, such as which arm to be used or which target to be reached. After the second cue was given, PMv neurons initially responded to the cue's visuospatial features and later reflected what the two visual cues instructed, progressively increasing information about the target location. In contrast, the activity of the majority of PMd neurons responded to the second cue with activity reflecting a combination of information supplied by the first and second cues. Such activity, already reflecting a forthcoming action, appeared with short latencies (<400 ms) and persisted throughout the delay period. In addition, both the PMv and PMd showed bilateral representation on visuospatial information and motor-target or effector information. These results further elucidate the functional specialization of the PMd and PMv during the processing of visual information for action planning.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 73 ◽  
Author(s):  
Tian-Ge Sun ◽  
Zhi-Juan Li ◽  
Jiang-Yang Shao ◽  
Yu-Wu Zhong

Two star-shaped multi-triphenylamine derivatives 1 and 2 were prepared, where 2 has an additional phenyl unit between a pyrene core and surrounding triphenylamine units. The oxidative electropolymerization of 1 and 2 occurred smoothly to give thin films of polymers P1 and P2. The electrochemistry and spectroelectrochemistry of P1 and P2 were examined, showing two-step absorption spectral changes in the near-infrared region. The electrochromic properties, including contrast ratio, response time, and cyclic stability of P1 and P2 were investigated and compared. Thin film of P2 displays slightly better electrochromic performance than P1, with a contrast ratio of 45% at 1475 nm being achieved.


2020 ◽  
Vol 88 ◽  
pp. 103145 ◽  
Author(s):  
Susanna Aromaa ◽  
Antti Väätänen ◽  
Iina Aaltonen ◽  
Vladimir Goriachev ◽  
Kaj Helin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document