Development and Current State of Smart Grids: A Review

Author(s):  
Ken Nagasaka ◽  

Smart grids are an important component of the modernization of the power industry worldwide. Many researchers have contributed to their development. At this point, reflection on whether smart grids are being used as was expected and where further investigation is necessary to make them more applicable to the future power industry is warranted. The aim of this paper is to introduce the state of research and path of development of smart grids worldwide. In this investigation, the primary objectives of smart grids, from their inception to the present with changes along the way, are also presented. In addition, difficulties and barriers in their development and implementation and whether these issues are being solved are discussed. Finally, the future and accompanying challenges of smart grids are presented. It should be noted that the current state and development of smart grids is a very deep topic, and it is not possible to mention all the relevant points in a single article. The present review paper attempts to address a limited portion of these to provide an essential understanding of smart grids. Regarding the communication base of a smart grid, only smart meters, some developed communication techniques and smart grid models are presented.

2013 ◽  
Vol 340 ◽  
pp. 908-912
Author(s):  
Ke Zhang

The smart grid is an ideal solution of the future electricity system, and scheduling aspects of the smart grid, the nerve center of the most intelligent can best embody the intelligent characteristic, this article summarizes the development of smart grid technologies, energy-saving scheduling, and the smart grid ofsignificance analysis to explore the implementation of energy-saving dispatch to the power industry, an energy efficient scheduling model and highlight the superiority of the energy-saving scheduling in order to ensure the smooth implementation of energy-saving scheduling.


Author(s):  
Rachid Habachi ◽  
Achraf Touil ◽  
Abdellah Boulal ◽  
Abdelkabir Charkaoui ◽  
Abdelwahed Echchatbi

<p>In this paper, we identify the current state and prospects of smart grids in Morocco. We begin by describing the current state of the Moroccan network, then we study the obstacles to the development of smart grids in Morocco and internationally. We conclude with recommendations and solutions to remove some barriers to the deployment of intelligent electrical networks in Morocco.</p>


Author(s):  
Joao Martins ◽  
Thomas Ignaz Strasser ◽  
Mihai Sanduleac

Author(s):  
Yona Lopes ◽  
Natalia Castro Fernandes ◽  
Tiago Bornia de Castro ◽  
Vitor dos Santos Farias ◽  
Julia Drummond Noce ◽  
...  

Advances in smart grids and in communication networks allow the development of an interconnected system where information arising from different sources helps building a more reliable electrical network. Nevertheless, this interconnected system also brings new security threats. In the past, communication networks for electrical systems were restrained to closed and secure areas, which guaranteed network physical security. Due to the integration with smart meters, clouds, and other information sources, physical security to network access is no longer available, which may compromise the electrical system. Besides smart grids bring a huge growth in data volume, which must be managed. In order to achieve a successful smart grid deployment, robust network communication to provide automation among devices is necessary. Therefore, outages caused by passive or active attacks become a real threat. This chapter describes the main architecture flaws that make the system vulnerable to attacks for creating energy disruptions, stealing energy, and breaking privacy.


10.6036/10085 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 92-97
Author(s):  
Juan Carlos Olivares Rojas ◽  
ENRIQUE REYES ARCHUNDIA ◽  
JOSE ANTONIO GUTIERREZ GNECCHI ◽  
ARTURO MENDEZ PATIÑO ◽  
JAIME CERDA JACOBO ◽  
...  

Although smart grids offer multiple advantages over traditional grids, there are still challenges to overcome to ensure the quality of service and grid security. In particular, cybersecurity plays an essential role in ensuring grid operation reliability and resilience to external threats. The traditional approach to address cybersecurity issues generally does not consider the human factor as the main component. Recently, the concept of cyber hygiene has emerged, where social and human aspects are fundamental to reduce vulnerabilities and the risk of attacks and breaches. In a similar manner to personal hygiene, which greatly influences people’s health, considering the human factor (i.e., human behaviour, awareness, and training) as a critical cybersecurity component, can significantly improve human operator cybersecurity practices that in turn can result in improved cybersecurity performance. In this paper, the authors propose and test a methodology for implementing cyber hygiene practices in the context of Smart Grid systems, focused on smart metering systems. The results suggest that implementing cyber hygiene practices can improve smart meter cybersecurity and be suitable for implementing other sensitive Smart Grid components. Key Words: Cybersecurity, Cyber Hygiene, Internet of Things, Smart Grid, Smart Meters.


The proposed smart grid infrastructure aims to make use of the existing public networks such as internet for data communication between consumer premises to the public power utility network. The smart-grid adopts smart-meters which basically collect vast amount of data to provide a holistic view of the connected load behavior and preferences pattern related to power and water consumption. The smart-grids provide benefits to the utilities and consumers alike. For utilities the benefits are real time data collection, ease of power management, and reduced personnel requirement. The benefits for the users on the other hand include availability of real time usage data, providing information on ways to minimize power consumption, monetary savings and so on. Since, the smart-grid uses existing public networks the utilities do not have the burden of installing any new infrastructure (except for installing the smart-meters), thus an added advantage. But, the downside of using the public network is susceptibility to a variety of network attacks, if not guarded well against. This paper talks about the various network security vulnerabilities that exist and the measures to patch the same before employing in the smart grid networks.


2022 ◽  
pp. 368-379
Author(s):  
Kimmi Kumari ◽  
M. Mrunalini

The highly interconnected network of heterogeneous devices which enables all kinds of communications to take place in an efficient manner is referred to as “IOT.” In the current situation, the data are increasing day by day in size as well as in terms of complexities. These are the big data which are in huge demand in the industrial sectors. Various IT sectors are adopting big data present on IOT for the growth of their companies and fulfilling their requirements. But organizations are facing a lot of security issues and challenges while protecting their confidential data. IOT type systems require security while communications which is required currently by configuration levels of security algorithms, but these algorithms give more priority to functionalities of the applications over security. Smart grids have become one of the major subjects of discussions when the demands for IOT devices increases. The requirements arise related to the generation and transmission of electricity, consumption of electricity being monitored, etc. The system which is responsible to collect heterogeneous data are a complicated structure and some of its major subsystems which they require for smooth communications include log servers, smart meters, appliances which are intelligent, different sensors chosen based on their requirements, actuators with proper and efficient infrastructure. Security measures like collection, storage, manipulations and a massive amount of data retention are required as the system is highly diverse in its architecture and even the heterogeneous IOT devices are interacting with each other. In this article, security challenges and concerns of IOT big data associated with smart grid are discussed along with the new security enhancements for identification and authentications of things in IOT big data environments.


2021 ◽  
Author(s):  
Faisal Y Al Yahmadi ◽  
Muhammad R Ahmed

Many countries around the world are implementing smart grids and smart meters. Malicious users that have moderate level of computer knowledge can manipulate smart meters and launch cyber-attacks. This poses cyber threats to network operators and government security. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we propose a model based on software that detects malicious nodes in a smart grid network. The model collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) model is implemented to classify nodes into good or malicious nodes by (high dimensional) giving the statues of 1 for good nodes and status of -1 for malicious (abnormal) nodes. The detection model also displays the network graphically as well as the data table. Moreover, this model displays the detection error in each cycle. It has a very low false alarm rate (2%) and a high detection rate as high as (98%). Future developments can trace the attack origin to eliminate or block the attack source minimizing losses before human control arrives.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 85
Author(s):  
Dr E. Laxmi Lydia ◽  
B Prasanna Kumar ◽  
D Ramya

The Optimal bidirectional flow of the electric power and the communicational data between suppliers and consumers are greatly enabled by the Smart Electricity in Grid. Reliable and Feasible micro energy generated due to Dynamic Energy Management (DEM) and the electricity market by consumers and suppliers. The smart grid features ICCM, aims to bring out the power at reduced cost. Powerful and practical DEM relies on load and sustainable production. Smart meters attain the huge data quantity through practical methods and solutions in this real world working. Smart Grids are enhanced by the operations such as data analytics, giving out high performance estimation, Adequate data network management and cloud computing. This paper aims focusthe issuesin big data and challenges experienced by the Dynamic Energy Management signed in Smart Grid. A detail explanation of data processing techniques that are mostly implemented and It also provides a brief description of the most commonly used data processing methods and recommended proposes a upcoming future directional research in thefield. 


Sign in / Sign up

Export Citation Format

Share Document