Analysis of Water Quality Conditions of Lake Hachiroko Using Fuzzy C-Means

Author(s):  
Kai Matsui ◽  
◽  
Yoichi Kageyama ◽  
Hiroshi Yokoyama

Lake Hachiroko, Japan, has many water quality issues, evident from phenomena such as green algae blooms. Understanding the details of the surface water quality of the lake, and the effect of seasons on the quality, is important. In our previous studies, we conducted fuzzy regression analysis of remote sensing data and direct measurements of water quality. The results showed that estimation maps of water quality were well created, using only five data points of the water quality parameters. To obtain maps that are in good agreement with the experimental data, remote sensing data and water quality values should be acquired simultaneously. However, performing such simultaneous observations can affect the preparation of the water quality estimation maps. We overcame this obstacle by using fuzzy c-means clustering (FCM), and considered the effect of specific disturbances and uncertainties on the remote sensing data. Furthermore, FCM using only remote sensing data creates estimation maps in which relative water surface conditions are classified. Therefore, determining the relationship between FCM results and water quality facilitates the creation of low-cost, high-frequency water quality estimation maps. Our results indicated that FCM was particularly effective in determining the presence of suspended solids (SS) during water quality analysis. However, the relationship between FCM results and water quality has not been determined in detail. In this study, we analyzed the water quality conditions of Lake Hachiroko with FCM using the data collected by the Advanced Space-borne Thermal Emission and Reflection Radiometer on Terra and, the Operational Land Imager on Landsat-8. In addition, FCM results were compared with the maps created by fuzzy regression analysis and the actual conditions of water pollution. The results indicated that (i) the maps created using FCM are effective in determining the water surface conditions, (ii) the FCM maps using data obtained during August and September have a strong relationship with biochemical oxygen demand (BOD) and SS, and (iii) the FCM maps using data obtained during May and June have a strong relationship with chemical oxygen demand (COD), SS, and total nitrogen (T-N).

Ecohydrology ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 717-726 ◽  
Author(s):  
Fan Deng ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Enhua Li ◽  
Liuzhi Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document