scholarly journals The Estimation of Image Jacobian Matrix with Time-Delay Compensation

Author(s):  
Xinmei Wang ◽  
Zhenzhu Liu ◽  
Feng Liu ◽  
Leimin Wang ◽  
◽  
...  

Time delay exists in image-based visual servo system, which will have a certain impact on the system control. To solve the impact of time delay, the time delay compensation of the object feature point image and the image Jacobian matrix is discussed in this paper. Some work is done in this paper: The estimation of the object feature point image under time delay is based on a proposed robust decorrelation Kalman filtering model, for the measurement vectors which cannot be obtained during time delay in the robust Kalman filtering model, a polynomial fitting method is proposed in which the selection of the polynomial includes the position, velocity and acceleration of the object feature point which impact the feature point trajectory, then the more accurate object feature point image can be obtained. From the estimated object feature point image under time delay, the more accurate image Jacobian matrix under time delay can be obtained. Simulation and experimental results verify the feasibility and superiority of this paper method.

Author(s):  
Xinmei Wang ◽  
◽  
Wu Wei ◽  
Feng Liu ◽  
Longsheng Wei ◽  
...  

Time delay exists in image-based visual servoing system. To compensate for the impact of time delay, the feature point image and image Jacobian matrix with time-delay compensation is discussed in this paper. Firstly, the current position and velocity estimation of the feature point in the image space is based on Kalman filtering, but Markov chain model is applied in the description of the measurement noise, then the cross-correlation between the process noise and measurement noise is produced, the traditional Kalman filtering algorithm is restricted, by introducing a filtering revision matrix, the process equation and measurement equation are redefined, under the mathematical properties of the noise in Kalman filtering algorithm, the filtering revision matrix can be obtained for the elimination of the cross-correlation, a robust Kalman filtering model can be constructed. Secondly, for the measurement vectors which cannot be obtained during time delay in the robust Kalman filtering model, a polynomial fitting method is proposed in which the selection of the polynomial includes the position, the velocity and the acceleration of the feature point which impact the feature point trajectory. Finally, from the current predicted position and velocity of the feature point in the image space, the current accurate image Jacobian matrix with time-delay compensation can be obtained. Simulation and experimental results verify the feasibility and superiority of this method.


2015 ◽  
Vol 135 (7) ◽  
pp. 755-764 ◽  
Author(s):  
Shuhei Shimizu ◽  
Yoshiki Ohno ◽  
Takahiro Nozaki ◽  
Kouhei Ohnishi

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jie Jiang ◽  
Changlin Ma

In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability1-αin normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probabilityαin abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory.


Sign in / Sign up

Export Citation Format

Share Document