Earthquake Disasters and Earthquake Engineering in Japan

2006 ◽  
Vol 1 (1) ◽  
pp. 26-45
Author(s):  
Syun'itiro Omote ◽  

Major earthquakes occur somewhere every year with accompanying devastations. For example, the center of the city of Managua was destroyed completely in December 1972 with the loss of more than 15,000 lives. Government buildings also did not escape destruction which brought about a paralysis in Governmental functioning for a short time. In April of the same year, in Iran an earthquake of magnitude 6.9 attacked the town of Ghir causing the loss of 5,000 lives. Large earthquakes accompanied by large losses of life occur frequently in Iran. Another type of earthquake destruction was caused in Peru in 1970 resulting in the loss of more than 50,000 lives under a huge mud slide that accompanied the big earthquake. In 1971, the San Fernando Earthquake, in the U.S.A. caused very heavy damage to the modern reinforced concrete buildings and highway overpasses calling serious attention to the devastation which might be brought about in modern large cities if a destructive earthquake should occur. The figure for lives lost by the San Fernando earthquake was small, assisted by the extremely lucky time of the occurrence of the earthquake at 6 A.M., when daily activity had not yet started. In 1968 an earthquake occurred in the city of Manila, the Philippines, crashing down completely an apartment house burying 260 people under the debris together with the destruction of many large reinforced concrete buildings. In the same year another big earthquake occurred in the northern part of Japan causing very heavy damage to the reinforced concrete buildings, all of which had been designed to resist earthquake force according to the Japanese regulations for antiseismic design. Repeated destruction of reinforced concrete buildings by earthquakes in recent years has caused a questioning of construction engineering. Such heavy destruction as experienced by reinforced concrete buildings in this earthquake (buildings which were designed and constructed under the antiseismic regulations) raised serious discussions among Japanese earthquake engineers which call for urgent studies. In Table 1 is shown a list of earthquakes that have resulted in heavy destruction since 1960. It may be surprising to find that about 20 earthquakes are included in the table showing that an average of three earthquakes of a destructive nature occurs somewhere on earth every two years. According to UNESCO statistics, between 1926 and 1950 over 350,000 people were killed by earthquakes, and the damage to buildings and public works totaled nearly $ 10,000 million. In proportion to the spread of urban civilization throughout the world, the toll taken by these destructive earthquakes has been steadily increasing and will increase more rapidly in the future. The only way to ensure against these substantial economic losses is to design and build, and to strengthen existing buildings, in such a way that the structure will resist the seismic forces to be expected in each area.

Author(s):  
G. van de Vorstenbosch ◽  
A.W. Charleson ◽  
D.J. Dowrick

This paper examines the seismic performance of over half of the existing low-rise reinforced concrete buildings that survived the 3 February 1931 Hawke's Bay earthquake. Lateral resistance of these buildings is provided by reinforced concrete walls, unreinforced brick masonry infill frames and open reinforced concrete moment-resisting frames. Twenty-five buildings are analysed in both orthogonal directions for the lateral loads estimated to have occurred during the earthquake. The probable shear and bending strengths of structural members are compared to the maximum calculated seismic shear forces and bending moments. Wall restoring moments are compared to overturning moments. Whereas analyses suggest that most structures should have been severely damaged during the earthquake, in fact they performed well. In most cases no structural damage to reinforced concrete members was reported. Asymmetric buildings performed about as well as symmetric buildings. Possible reasons for these observations are examined and it is recommended how current practice might reflect these findings. The paper also contributes to an approximate assessment procedure, based on ratios of structural cross-sectional area to ground floor area, and reports on the structural areas of buildings that performed well in the earthquake. The excellent seismic performance of reinforced concrete buildings during the 1931 Hawke's Bay earthquake suggests current earthquake engineering analyses of similar pre-1935 low-rise non-domestic reinforced concrete buildings may underrate their seismic performance.


2020 ◽  
Author(s):  
Δέσποινα Σκουλίδου

Παρόλο που ο κλάδος της αντισεισμικής μηχανικής έχει γνωρίσει σημαντική ανάπτυξη τις τελευταίες δεκαετίες, πρόσφατα παραδείγματα σεισμών που είχαν ως αποτέλεσμα δυσανάλογα μεγάλες απώλειες, ζωών και οικονομικών, μεταξύ άλλων, αποδεικνύουν ότι η βελτίωσή του είναι απαραίτητη. Οι αδυναμίες που συχνά συναντώνται στην πράξη οφείλονται κυρίως σε ελλείψεις και σε ασάφειες των κανονιστικών κειμένων και των ισχυόντων αντισεισμικών κανονισμών, καθιστώντας την αναθεώρησή τους επιτακτική ανάγκη. Η παρούσα διατριβή εξετάζει τον τρόπο εφαρμογής της γωνίας πρόσπτωσης της σεισμικής δράσης κατά την ανάλυση κτιρίων. Συγκεκριμένα ο κύριος στόχος της διατριβής είναι να προσδιορίσει την επίδραση που έχει η γωνία πρόσπτωσης στην σεισμική απόκριση κτιριακών κατασκευών και να παρέχει μεθόδους ώστε να ληφθεί υπόψη κατά την αποτίμηση της σεισμικής συμπεριφοράς υφιστάμενων κτιρίων. Δύο διαφορετικές προσεγγίσεις εφαρμόζονται για τη μελέτη της γωνίας πρόσπτωσης, ανάλογα με τον τρόπο προσομοίωσης της σεισμικής δράσης. Συγκεκριμένα, σύμφωνα με ισχύοντα κανονιστικά κείμενα, η σεισμική δράση μπορεί να περιέχει αβεβαιότητα, όπως για παράδειγμα με τη χρήση ομάδας επιταχυνσιογραφημάτων, ή να είναι αιτιοκρατικής φύσεως, όπως για παράδειγμα με τη χρήση ενός κανονικοποιημένου φάσματος απόκρισης. Στην πρώτη προσέγγιση, η οποία καταλαμβάνει το μεγαλύτερο μέρος της διατριβής, εφαρμόζονται μέθοδοι ανάλυσης με βάση την επιτελεστικότητα και συγκεκριμένα ακολουθείται η μέθοδος. που παρέχεται από το Pacific Earthquake Engineering Research Center, χρησιμοποιώντας αβεβαιότητα στην προσομοίωση της σεισμικής δράσης. Ακολουθώντας τη μέθοδο αυτή, μετά την προσομοίωση έξι κτιρίων οπλισμένου σκυροδέματος (Ο/Σ) χρησιμοποιώντας κατάλληλο λογισμικό και την εξαγωγή των ιδιομορφικών χαρακτηριστικών τους, πραγματοποιείται ανάλυση σεισμικής επικινδυνότητας του πεδίου και στη συνέχεια γίνεται επιλογή κατάλληλων επιταχυνσιογραφημάτων. Ομάδες επιταχυνσιογραφημάτων διαφορετικού μεγέθους επιλέγονται για τη διέγερση των έξι κτιρίων και η επιρροή της γωνίας πρόσπτωσης εξετάζεται σε όλα τα ακόλουθα στάδια της μεθόδου. Δεδομένου ότι έχει αποδειχθεί πως το μέγεθος της ομάδας των επιταχυνσιογραφημάτων έχει σημαντική επιρροή στα αποτελέσματα της σεισμικής ανάλυσης, η συνδυασμένη επίδραση της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων αναλύονται επίσης. Η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας εξετάζεται αρχικά στο δεύτερο στάδιο της μεθόδου, το οποίο περιλαμβάνει την ανάλυση των κτιρίων, μέσω της στατιστικής επεξεργασίας επιλεγμένων παραμέτρων απόκρισης. Οι παράμετροι απόκρισης εξετάζονται πιθανοτικά χρησιμοποιώντας μέτρα θέσης και μέτρα διασποράς των κατανομών τους. Επιπλέον, μελετάται το στατιστικό μοντέλο που μπορεί να χρησιμοποιηθεί ώστε να προσομοιώσει με μεγαλύτερη ακρίβεια και μικρότερο σφάλμα τις κατανομές των παραπάνω παραμέτρων απόκρισης. Στη συνέχεια, η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων εξετάζεται στο στάδιο του υπολογισμού των απωλειών και συγκεκριμένα ως προς την καμπύλη τρωτότητας κατάρρευσης και ως προς την πιθανότητα κατάρρευσης των κατασκευών. Τέλος, η επιρροή της γωνίας πρόσπτωσης και του μεγέθους της ομάδας επιταχυνσιογραφημάτων εξετάζεται ως προς το κόστος επισκευής ή/και ανακατασκευής των κτιρίων. Στην παρούσα διατριβή το συνολικό κόστος λαμβάνεται ως το κόστος επισκευής δομικών και μη δομικών στοιχείων της κατασκευής. Το συνολικό αποτέλεσμα της ανάλυσης είναι η πρόταση ενός βέλτιστου συνδυασμού αριθμού γωνιών πρόσπτωσης και μεγέθους ομάδας επιταχυνσιογραφημάτων, ώστε να επιτευχθεί μείωση της επικινδυνότητας, όπως αυτή εκφράζεται στα διάφορα στάδια της ανάλυσης, σε ικανοποιητικά επίπεδα. Σημαντικό εύρημα των αναλύσεων είναι το ότι μεταγενέστερα στάδια της μεθόδου έχουν μικρότερη επιρροή της γωνίας πρόσπτωσης. Στη δεύτερη προσέγγιση, η σεισμική δράση αντιπροσωπεύεται από ένα κανονικοποιημένο φάσμα απόκρισης και η ανάλυση των κατασκευών πραγματοποιείται χρησιμοποιώντας την Ισοδύναμη Στατική μέθοδο. Η διαφορά αυτής της προσέγγισης με την προηγούμενη έγκειται στο ότι η σεισμική δράση είναι αιτιοκρατικής φύσεως και άρα απαιτείται η γωνία πρόσπτωσης που οδηγεί στην πιο δυσμενή απόκριση, αντί μιας μέσης απόκρισης προκαλούμενης από πλήθος γωνιών. Ο γραμμικός ελαστικός νόμος των υλικών και ο τμηματικός ορισμός του φάσματος απόκρισης επιτρέπουν την εξαγωγή αναλυτικών λύσεων για τον υπολογισμό της κρίσιμης γωνίας πρόσπτωσης. Αναλυτικές λύσεις εξάγονται χρησιμοποιώντας ένα κανονικοποιημένο φάσμα απόκρισης σύμφωνα με κανονιστικά κείμενα και η κρίσιμη γωνία πρόσπτωσης υπολογίζεται για συγκεκριμένες κατηγορίες κτιρίων και παραμέτρους απόκρισης. Το τελευταίο μέρος της διατριβής περιλαμβάνει μια συνοπτική παρουσίαση των προτεινόμενων μεθόδων, συνοδευόμενη από την σημασία/συμβολή τους αλλά και από πιθανές επιπλοκές κατά την εφαρμογή τους. Τέλος, επισημαίνονται οι περιορισμοί της παρούσας μελέτης, καθώς και προτάσεις για μελλοντική έρευνα και περεταίρω εξέλιξη του αντικειμένου.


2021 ◽  
Vol 11 (18) ◽  
pp. 8691
Author(s):  
Juan Carlos Vielma ◽  
Roberto Aguiar ◽  
Carlos Frau ◽  
Abel Zambrano

On 16 April 2016, an earthquake of Mw 7.8 shook the coast of Ecuador, causing the destruction of buildings and a significant number of casualties. Following a visit by the authors to the city of Portoviejo during the debris removal and recovery stage, it was noted that several reinforced concrete buildings located on corners had collapsed in the central part of the city. These buildings were characterized by the presence of masonry at the edges of the buildings but not between the two mostly open-plan facades on the corner for practical reasons. This article reviews the effect of masonry infill panels on the seismic response of reinforced concrete structures. For this, a model that contains the geometric and mechanical characteristics typical of collapsed buildings was generated and subjected to nonlinear analysis, with both static and dynamic increments. The results show the clear influence of the masonry infill panels on the structural response through the torsional behavior that is reflected in the evolution of the floor rotations. Finally, dynamic incremental analysis is used to obtain the collapse fragility curve of the building, and a new damage measure based on floor rotations is proposed.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032124
Author(s):  
Carlos Julio Calle Castro ◽  
Juan Sebastián Maldonado Noboa ◽  
Luis Mario Almache Sánchez

Abstract Ecuador is located in the Pacific Ring of Fire, a country with high risk and seismic sensitivity, evidenced by the 6.8-degree earthquake in Ambato in 1949, which left approximately 6000 dead, the 7.8-degree earthquake in Manabí and Esmeraldas in the year 2016 with 663 victims and 29672 buildings without the possibility of use. Currently there is a problem about seismic performance in reinforced concrete buildings, since many were built with old regulations; so, it is necessary to assess their vulnerability. Quito, Guayaquil and Cuenca, large cities in Ecuador, have formal studies of seismic vulnerability, mostly carried out by university students and teachers. In contrast, most small cities do not have these studies; or, they need to be updated to validate their results. This is the case of the city of Azogues. The objective of this research is to evaluate the vulnerability of structures using the Hazus methodology, adapted to Ecuador, in the downtown area of the city of Azogues, in structures located around the Central Park, to establish the seismic performance in reinforced concrete buildings. The Hazus methodology, which determines the vulnerability of buildings from fragility curves, which are entered with inputs as the capacity, performance level and drift curves calculated through Ecuadorian models. The capacity curves, depending on various aspects such as: the material, number of floors, spans between columns, among others; they vary from building to building. In this sense, capacity curves were defined for sets of buildings with similar characteristics, coinciding with the Hazus methodology. The performance levels and the displacements were calculated with the ETABS computer package. For fragility curves, the model that most real simulates the response of a structure is the non-linear analysis, because it considers the decrease in stiffness in columns and beams, as well as the deterioration of the properties of the materials. In this sense, there are fragility curves of Ecuadorian buildings for four levels. The earthquake readings enable the construction of a demand spectrum, which, when contrasted with the capacity spectrum, leads to the performance point. Its position sometimes varies per the elastic demand spectrum, which is diminished by its inelastic behavior. As the demand spectrum decreases, the damage will increase. Once the coordinates of the performance point are known, the fragility curves are used; and, the possible damages are defined, quantifying them in percentage.


2021 ◽  
Author(s):  
◽  
Geert Van de Vorstenbosch

<p>This thesis examines current earthquake engineering theory and practice regarding Earthquake Risk Buildings to determine if the seismic performance of reinforced concrete buildings is currently underestimated. The types of structural systems investigated are: Reinforced Concrete Structural Walls Unreinforced Brick Masonry (URM) Infill Frames Reinforced Concrete Moment Resisting Frames Buildings with the above systems that survived the February 3 1931 Hawke's Bay earthquake and are still in existence are the set of buildings studied. As much structural information as possible was found for a total of 25 buildings which are analysed in two orthogonal directions. The calculated probable shear and bending strength of each structural member (at ground floor) is compared with the actual estimated seismic shear force and bending moment applied during the earthquake. The restoring moments of structural walls are compared to the calculated overturning moments. The results are expressed as ratios of the above forces and moments of each member. The thesis shows that current theory expects most buildings to fail during both the 1931 Hawke's Bay earthquake and the Code design earthquake but most performed very well with no structural damage. The thesis examines the possible causes of underestimation of seismic performance by current earthquake engineering theory and practice, and makes recommendations for refining and improving practice. Recommendations are also made for further research to establish a simple assessment method for analysing other similar buildings based on the plan area of reinforced concrete structural elements alone.</p>


2021 ◽  
Author(s):  
◽  
Geert Van de Vorstenbosch

<p>This thesis examines current earthquake engineering theory and practice regarding Earthquake Risk Buildings to determine if the seismic performance of reinforced concrete buildings is currently underestimated. The types of structural systems investigated are: Reinforced Concrete Structural Walls Unreinforced Brick Masonry (URM) Infill Frames Reinforced Concrete Moment Resisting Frames Buildings with the above systems that survived the February 3 1931 Hawke's Bay earthquake and are still in existence are the set of buildings studied. As much structural information as possible was found for a total of 25 buildings which are analysed in two orthogonal directions. The calculated probable shear and bending strength of each structural member (at ground floor) is compared with the actual estimated seismic shear force and bending moment applied during the earthquake. The restoring moments of structural walls are compared to the calculated overturning moments. The results are expressed as ratios of the above forces and moments of each member. The thesis shows that current theory expects most buildings to fail during both the 1931 Hawke's Bay earthquake and the Code design earthquake but most performed very well with no structural damage. The thesis examines the possible causes of underestimation of seismic performance by current earthquake engineering theory and practice, and makes recommendations for refining and improving practice. Recommendations are also made for further research to establish a simple assessment method for analysing other similar buildings based on the plan area of reinforced concrete structural elements alone.</p>


Sign in / Sign up

Export Citation Format

Share Document