Investigating the Gap Between Actual and Perceived Distance from a Nuclear Power Plant: A Case Study in Japan

2015 ◽  
Vol 10 (4) ◽  
pp. 627-634 ◽  
Author(s):  
Takaaki Kato ◽  
◽  
Shogo Takahara ◽  
Toshimitsu Homma ◽  

This study investigates factors in gaps between perceived and actual straight-line distance to Japan’s Kashiwazaki-Kariwa nuclear power plant (KKNPP). The distance to areas in the official accident response plan is defined using straight lines from the NPP, making it important to determine whether area residents understand these distances correctly. Adults living in the two municipalities cohosting the NPP were surveyed randomly in 2005, 2010 and 2011. In this study, we consider three groups of factors — geographical features, personal attributes, and experience in events highlighting nuclear safety. The Niigata-ken Chuetsu-oki earthquake hit the NPP between the first and second of these three surveys, and the Tohoku earthquake and the March 2011 Fukushima nuclear accident occurred between the second and the third surveys. Before the Fukushima accident, overestimations of straight-line distance were common among respondents, and geographical features such as lack of NPP visibility aggravated bias between actual and perceived distance. After the Fukushima accident, underestimation of the distance became common and personal attributes became more influential as the factor of the perceived-actual distance gap.

Author(s):  
Dongyu He ◽  
Xing Chen ◽  
Jiming Lin

The Fukushima Daiichi nuclear accident was a series of equipment failures, nuclear meltdowns, and releases of radioactive materials at the Fukushima I Nuclear Power Plant, following the Tōhoku earthquake and tsunami on 11 March 2011. According to the cause and process of Fukushima severe accident, several possible scenarios for CPR1000 nuclear power plant were analyzed in this paper, under the assumed situation similar to Fukushima severe accident, with the severe accident analysis code MAAP4. According to the analysis results, several weak points of CPR1000 power plant under situation similar to Fukushima accident were found. The electric power and cooling ability for CPR1000 power plant appear to be most important factors under such accident. Then, several temporary cooling strategies for CPR1000 power plant were suggested, including ASG water supply strategy, temporary injection strategy for primary loop, temporary injection strategy for secondary loop, which would improve the safety of CPR1000 power plant under the situation similar to Fukushima accident. At the last, assessments of effectiveness for these strategies were performed, and the results were compared with analysis without these strategies. The comparisons showed that correctly actions of these strategies would effectively prevent the accident process of CPR1000 power plant under situation similar to Fukushima accident.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiro Horiguchi ◽  
Kayoko Kawamura ◽  
Yasuhiko Ohta

AbstractIn 2012, after the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that followed the Tohoku earthquake and tsunami in March 2011, no rock shell (Thais clavigera; currently recognized as Reishia clavigera; Gastropoda, Neogastropoda, Muricidae) specimens were found near the plant from Hirono to Futaba Beach (a distance of approximately 30 km). In July 2016, however, rock shells were again found to inhabit the area. From April 2017 to May 2019, we collected rock shell specimens monthly at two sites near the FDNPP (Okuma and Tomioka) and at a reference site ~ 120 km south of the FDNPP (Hiraiso). We examined the gonads of the specimens histologically to evaluate their reproductive cycle and sexual maturation. The gonads of the rock shells collected at Okuma, ~ 1 km south of the FDNPP, exhibited consecutive sexual maturation during the 2 years from April 2017 to May 2019, whereas sexual maturation of the gonads of specimens collected at Hiraiso was observed only in summer. The consecutive sexual maturation of the gonads of the specimens collected at Okuma might not represent a temporary phenomenon but rather a site-specific phenotype, possibly caused by specific environmental factors near the FDNPP.


Author(s):  
Michio Murakami ◽  
Takao Nirasawa ◽  
Takao Yoshikane ◽  
Keisuke Sueki ◽  
Kimikazu Sasa ◽  
...  

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54–65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


Author(s):  
Wei Gao ◽  
Guofeng Tang ◽  
Jingyu Zhang ◽  
Qinfang Zhang

Seismic risk of nuclear power plant has drawn increasing attention after Fukushima accident. An intensive study has been carried out in this paper, including sampling of component and structure fragility based on Monte Carlo method, fragility analysis on system or plant level, convolution of seismic hazard curves and fragility curves. To derive more accurate quantification results, the binary decision diagram (BDD) algorithm was introduced into the quantification process, which effectively reduces the deficiency of the conventional method on coping with large probability events and negated logic. Seismic Probabilistic Safety Analysis (PSA/PRA) quantification software was developed based on algorithms discussed in this paper. Tests and application has been made for this software with a specific nuclear power plant seismic PSA model. The results show that this software is effective on seismic PSA quantification.


Author(s):  
Afrida Fairuz ◽  
Md. Hossain Sahadath

Abstract The prevailing meteorological conditions around the site of the proposed Rooppur Nuclear Power Plant have been studied vigorously. The in-depth perusal has revealed the existence of three seasons—summer, rainy, and winter with stability classes A, B, and A, respectively, during the day and F during the night. The eventual wind speed and direction of the seasons have been observed. Subsequent locations along the dispersion directions have been identified using googleearthpro, which includes highways, educational institution, medical centers, commercial area, etc. Dose contours corresponding to a source term equivalent to Fukushima accident have been created to verify the dispersion direction and perceive the plume arrival time in the designated locations using health physics code HotSpot. Strong dependency of plume arrival time on the stability classes has been observed, and lowest values are found for F stability class. Finally, some shelter houses are proposed to accommodate endangered inhabitants during emergency.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0212917 ◽  
Author(s):  
Hiroko Hori ◽  
Makiko Orita ◽  
Yasuyuki Taira ◽  
Takashi Kudo ◽  
Noboru Takamura

2018 ◽  
Vol 15 (23) ◽  
pp. 7235-7242 ◽  
Author(s):  
Wen Yu ◽  
Mathew P. Johansen ◽  
Jianhua He ◽  
Wu Men ◽  
Longshan Lin

Abstract. In order to better understand the impact of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on a commercial marine species, neon flying squid (Ommastrephes bartramii) samples obtained from the northwestern Pacific in November 2011 were analyzed for a range of artificial and natural radionuclides (Cs-134, Cs-137, Ag-110m, U-238, Ra-226, and K-40). Short-lived radionuclides Cs-134 and Ag-110m released from the FDNPP accident were found in the samples, with an extremely high water-to-organism concentration ratio for Ag-110m (>2.9×104). While accident-derived radionuclides were present, their associated dose rates for the squid were far lower than the relevant benchmark of 10 µGy h−1. For human consumers ingesting these squid, the dose contribution from natural radionuclides, including Po-210, was far greater (>99.9 %) than that of Fukushima-accident radionuclides (<0.1 %). The whole-body to tissue and whole-body to gut concentration ratios were calculated and reported, providing a simple method to estimate the whole-body concentration in environmental monitoring programs, and filling a data gap for concentration ratios in cephalopods. Our results help fill data gaps in uptake of nuclear power plant radionuclides in the commercially important Cephalopoda class and add to scarce data on open-ocean nekton in the northwestern Pacific shortly after the Fukushima accident.


Sign in / Sign up

Export Citation Format

Share Document