Research and Software Implementation of Seismic Probabilistic Safety Analysis Quantification Method

Author(s):  
Wei Gao ◽  
Guofeng Tang ◽  
Jingyu Zhang ◽  
Qinfang Zhang

Seismic risk of nuclear power plant has drawn increasing attention after Fukushima accident. An intensive study has been carried out in this paper, including sampling of component and structure fragility based on Monte Carlo method, fragility analysis on system or plant level, convolution of seismic hazard curves and fragility curves. To derive more accurate quantification results, the binary decision diagram (BDD) algorithm was introduced into the quantification process, which effectively reduces the deficiency of the conventional method on coping with large probability events and negated logic. Seismic Probabilistic Safety Analysis (PSA/PRA) quantification software was developed based on algorithms discussed in this paper. Tests and application has been made for this software with a specific nuclear power plant seismic PSA model. The results show that this software is effective on seismic PSA quantification.

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Wei Gao ◽  
Guofeng Tang ◽  
Jingyu Zhang ◽  
Qinfang Zhang

Shanghai Nuclear Engineering Research and Design Institute (SNERDI) has been studying seismic risk analysis for nuclear power plant for a long time, and completed seismic margin analysis for several plants. After Fukushima accident, seismic risk has drawn an increasing attention worldwide, and the regulatory body in China has also required the utilities to conduct a detailed analysis for seismic risk. So, we turned our focus on a more intensive study of seismic probabilistic safety assessment (PSA/PRA) for nuclear power plant in recent years. Since quantification of seismic risk is a key part in Seismic PSA, lots of efforts have been devoted to its research by SNERDI. The quantification tool is the main product of this research, and will be discussed in detail in this paper. First, a brief introduction to Seismic PSA quantification methodology is presented in this paper, including fragility analysis on system or plant level, convolution of seismic hazard curves and fragility curves, and uncertainty analysis as well. To derive more accurate quantification results, the binary decision diagram (BDD) algorithm was introduced into the quantification process, which effectively reduces the deficiency of the conventional method on coping with large probability events and negated logic. Finally, this paper introduced the development of the seismic PSA quantification tool based on the algorithms discussed in this paper. Tests and application have been made for this software based on a specific nuclear power plant seismic PSA model.


Author(s):  
Cristian Tudoran

Abstract In the last four decades, as the nuclear industry grew and got mature, the importance of adequate risk evaluating tools became decisive. Therefore, the Probabilistic Risk Assessment (also known as Probabilistic Safety Analysis) became a cornerstone of the decisions in such high energy and high-risk industry. PSA has an internationally recognised standard, and it is supported by a group of highly trained experts, (no more than a few hundred worldwide).This work can be used as a guide for the improving the required individual and teamwork skills needed in a Probabilistic Safety Analysis - PSA Team. The necessity of such a moment in a PSA Training was imagined by Dan Serbanescu, doctor in science, nuclear energy expert, risk and safety analyst, in May 2017. After few discussions and according to recognised international standards (Probabilistic Risk Assessment procedures guide, 1983), a first time delivery was possible in the PSA Training delivered in Centrala Nuclearoelectrica Cernavoda / Nuclear Power Plant Cernavoda (2017).This article presents a systematic approach for team improvement skills, consisting of the observation, presentation of the skills required, the skills practised in the proposed exercises, the techniques used during this module (coaching included), and results. The Purpose of the newly proposed combination of training and coaching methods with the specific traditional one oriented mainly to the technical and procedural skills is to raise participants’ awareness about how soft-skills can be used in the PSA Teamwork. As Nuclear Power Plant can be easily compared with a complex organisation, soft skills are vital to be developed within the teams. PSA is becoming more required not only in nuclear but also in the aerospace industry (it was adopted by NASA - National Aeronautics and Space Administration for all future space program and by some hazardous chemical industries, as also stated in international documents (of the European Commission for instance).


Author(s):  
Michio Murakami ◽  
Takao Nirasawa ◽  
Takao Yoshikane ◽  
Keisuke Sueki ◽  
Kimikazu Sasa ◽  
...  

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54–65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


Sign in / Sign up

Export Citation Format

Share Document