Congratulations! The Second JDR Award

2017 ◽  
Vol 12 (2) ◽  
pp. 222-222
Author(s):  
Editors-in-Chief ◽  
Haruo Hayashi

The second JDR Award ceremony was held in Kasumigaseki, Japan, at November 22, 2016 and the certificate was given to the JDR award winner, Prof. Harry Yeh of Oregon State University (Prof. Shinji Sato of the University of Tokyo received it as a dupty). We congratulate the winner and sincerely wish for future success.

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 551-551
Author(s):  
David Burdick ◽  
Karen Rose ◽  
Dana Bradley

Abstract Momentum is growing for the Age-Friendly University Network as proponents, primarily gerontology educators, have successfully encouraged university presidents to sign nonbinding pledged to become more age-friendly in programs and policies, endorsing 10 Age-Friendly University Principles. While this trend is inspiring, more is needed to fully achieve benefits for universities, students, communities, and older adults. Four presentations discuss innovative ways of deepening university commitment, weaving the principles into the fabric of the university. The first paper describes thematic content analysis from five focus groups with admissions and career services staff at Washington University in St. Louis and the recommendations that emerged for the provision of programs and services for post-traditional students. The second paper describes efforts to utilize community-impact internships and community partnerships to build support for Age-Friendly University initiatives at Central Connecticut State University, particularly in the context of the university’s recent Carnegie Foundation Engaged Campus designation. The third paper describes how Drexel University became Philadelphia’s first Age-Friendly University and current efforts in the Drexel College of Nursing and Heatlh Care Profession’s AgeWell Collaboratory to convene university-wide leadership for an AFU Steering Committee working on four mission-driven efforts to ensure AFU sustainability. The fourth paper describes steps taken by AFU proponents at Western Oregon State University to gain endorsement from university leadership and community, including mapping the 10 AFU Principles to the university’s strategic plan, faculty senate endorsement, and survey/interview results of older community members’ use of the university, which collectively have enhanced deeper and broader campus buy-in of AFU.


Author(s):  
Douglass Taber

Richard J. K. Taylor of the University of York has developed (Angew. Chem. Int. Ed. 2008, 47, 1935) the diasteroselective intramolecular Michael cyclization of phosphonates such as 2. Quenching of the cyclized product with paraformaldehyde delivered ( + )-Paeonilactone B 3. Roberto Fernández de la Pradilla of the CSIC, Madrid established (Tetrahedron Lett. 2008, 49, 4167) the diastereoselective intramolecular hetero Michael addition of alcohols to enantiomerically-pure acyclic sulfoxides such as 4 to give the allylic sulfoxide 5. Mislow-Evans rearrangement converted 5 into 6, the enantiomerically-pure core of Ethyl Deoxymonate B 7. The ellagitannins, represented by 10, are single atropisomers around the biphenyl linkage. David R. Spring of the University of Cambridge found (Organic Lett. 2008, 10, 2593) that the chiral constraint of the carbohydrate backbone of 9 directed the absolute sense of the oxidative coupling of the mixed cuprate derived from 9, leading to Sanguiin H-5 10 with high diastereomeric control. A key challenge in the synthesis of the solandelactones, exemplified by 14, is the stereocontrolled construction of the unsaturated eight-membered ring lactone. James D. White of Oregon State University found (J. Org. Chem. 2008, 73, 4139) an elegant solution to this problem, by exposure of the cyclic carbonate 11 to the Petasis reagent, to give 12. Subsequent Claisen rearrangement delivered the eight-membered ring lactone, at the same time installing the ring alkene of Solandelactone E 14. AD-mix usually proceeds with only modest enantiocontrol with terminal alkenes. None the less, Ian Paterson, also of the University of Cambridge, observed (Angew. Chem. Int. Ed. 2008, 47, 3016, Angew. Chem. Int. Ed. 2008, 47, 3021) that bis-dihydroxylation of the diene 17 proceeded to give, after acid-mediated cyclization, the bis-spiro ketal core 18 of Spirastrellolide A Methyl Ester 19 with high diastereocontrol.


Author(s):  
Douglass F. Taber

M. Kevin Brown of Indiana University prepared (J. Am. Chem. Soc. 2015, 137, 3482) the cyclobutane 3 by the organocatalyzed addition of 2 to the alkene 1. Karl Anker Jørgensen of Aarhus University assembled (J. Am. Chem. Soc. 2015, 137, 1685) the complex cyclobutane 7 by the addition of 5 to the acceptor 4, followed by conden­sation with the phosphorane 6. Zhi Li of the National University of Singapore balanced (ACS Catal. 2015, 5, 51) three enzymes to effect enantioselective opening of the epoxide 8 followed by air oxidation to 9. Gang Zhao of the Shanghai Institute of Organic Chemistry and Zhong Li of the East China University of Science and Technology added (Org. Lett. 2015, 17, 688) 10 to 11 to give 12 in high ee. Akkattu T. Biju of the National Chemical Laboratory combined (Chem. Commun. 2015, 51, 9559) 13 with 14 to give the β-lactone 15. Paul Ha-Yeon Cheong of Oregon State University and Karl A. Scheidt of Northwestern University reported (Chem. Commun. 2015, 51, 2690) related results. Dieter Enders of RWTH Aachen University constructed (Chem. Eur. J. 2015, 21, 1004) the complex cyclopentane 20 by the controlled com­bination of 16, 17, and 18, followed by addition of the phosphorane 19. Derek R. Boyd and Paul J. Stevenson of Queen’s University Belfast showed (J. Org. Chem. 2015, 80, 3429) that the product from the microbial oxidation of 21 could be protected as the acetonide 22. Ignacio Carrera of the Universidad de la República described (Org. Lett. 2015, 17, 684) the related oxidation of benzyl azide (not illustrated). Manfred T. Reetz of the Max-Planck-Institut für Kohlenforschung and the Philipps-Universität Marburg found (Angew. Chem. Int. Ed. 2014, 53, 8659) that cytochrome P450 could oxidize the cyclohexane 23 to the cyclohexanol 24. F. Dean Toste of the University of California, Berkeley aminated (J. Am. Chem. Soc. 2015, 137, 3205) the ketone 25 with 26 to give 27. Benjamin List, also of the Max-Planck-Institut für Kohlenforschung, reported (Synlett 2015, 26, 1413) a parallel investigation. Philip Kraft of Givaudan Schweiz AG and Professor List added (Angew. Chem. Int. Ed. 2015, 54, 1960) 28 to 29 to give 30 in high ee.


2017 ◽  
Vol 78 (6) ◽  
pp. 308
Author(s):  
ACRL ACRL

Cheryl A. Middleton, associate university librarian for learning and engagement, Oregon State University Libraries & Press, is the 80th president of ACRL.Lauren Pressley, director of the University of Washington (UW) Tacoma Library and associatedean of UW Libraries, has been elected vice-president/president-elect of ACRL.


Author(s):  
Douglass F. Taber

Shou-Fei Zhu of Nankai University developed (Angew. Chem. Int. Ed. 2014, 53, 13188) an iron catalyst that effected the enantioselective cyclization of 1 to 2. Bypassing diazo precursors, Junliang Zhang of East China Normal University used (Angew. Chem. Int. Ed. 2014, 53, 13751) a gold catalyst to cyclize 3 to 4. Taking advantage of energy transfer from a catalytic Ir complex, Chuo Chen of University of Texas Southwestern carried out (Science 2014, 346, 219) intramolec­ular 2+2 cycloaddition of 5, leading, after dithiane formation, to the cyclobutane 6. Intramolecular ketene cycloaddition has been limited in scope. Liming Zhang of the University of California Santa Barbara found (Angew. Chem. Int. Ed. 2014, 53, 9572) that intramolecular oxidation of an intermediate Ru vinylidene led to a species that cyclized to the cyclobutanone 8. James D. White of Oregon State University devised (J. Am. Chem. Soc. 2014, 136, 13578) an iron catalyst that mediated the enantioselective Conia-ene cyclization of 9 to 10. Xiaoming Feng of Sichuan University observed (Angew. Chem. Int. Ed. 2014, 53, 11579) that the Ni-catalyzed Claisen rearrangement of 11 proceeded with high diastereo- and enantiocontrol. The relative configuration of the product 12 was not reported. Robert H. Grubbs of Caltech showed (J. Am. Chem. Soc. 2014, 136, 13029) that ring opening cross metathesis of 13 with 14 delivered the Z product 15. Mn(III) cyclization has in the past required a stoichiometric amount of inorganic oxidant. Sangho Koo of Myong Ji University found (Adv. Synth. Catal. 2014, 356, 3059) that by adding a Co co- catalyst, air could serve as the stoichiometric oxidant. Indeed, 16 could be cyclized to 17 using inexpensive Mn(II). Matthias Beller of the Leibniz-Institüt für Katalyse prepared (Angew. Chem. Int. Ed. 2014, 53, 13049) the cyclohexene 20 by coupling the racemic alcohol 18 with the amine 19. Paultheo von Zezschwitz of Philipps-Universität Marburg added (Chem. Commun. 2014, 50, 15897) diethyl zinc in a conjugate sense to 21, then reduced the product to give 22. Depending on the reduction method, either diastereomer of the product could be made dominant. Nuno Maulide of the University of Vienna dis­placed (Angew. Chem. Int. Ed. 2014, 53, 7068) the racemic chloride 23 with diethyl zinc to give 24 as a single diastereomer.


Author(s):  
Douglass Taber

Yoshiji Takemoto of Kyoto University designed (Organic Lett. 2009, 11, 2425) an organocatalyst for the enantioselective conjugate addition of alkene boronic acids to γ-hydroxy enones, leading to 1 in high ee. Attempted Mitsunobu coupling led to the cyclopropane 2, while bromoetherification followed by intramolecular alkylation delivered the cyclopropane 3. Jeffrey W. Bode of the University of Pennsylvania demonstrated (Organic Lett. 2009, 11, 677) a remarkable dichotomy in the reactivity of N-heterocyclic carbenes. A triazolium precatalyst combined 4 and 5 to give 6, whereas an imidazolium precatalyst combined 4 and 5 to give 7. Xinmiao Liang of the Dalian Institute of Chemical Physics and Jinxing Ye of the East China University of Science and Technology devised (Organic Lett. 2009, 11, 753) a Cinchona -derived catalyst that converted the prochiral cyclohexenone 8 into the diester 10 in high ee. Rich G. Carter of Oregon State University found (J. Org. Chem. 2009, 74, 2246) a simple sulfonamide-based proline catalyst that effected the Mannich condensation of the prochiral ketone with ethyl glyoxalate 12 and the amine 13, leading to the amine 14. In the first pot of a concise, three-pot synthesis of (-)-oseltamivir, Yujiro Hayashi of the Tokyo University of Science combined (Angew. Chem. Int. Ed. 2009, 48, 1304) 15 and 16 in the presence of a catalytic amount of diphenyl prolinol TMS ether to give an intermediate nitro aldehyde. Addition of the phosphonate 17 led to a cyclohexenecarboxylate, that on the addition of the thiophenol 18 equilibrated to the ester 19. Ying-Chun Chen of Sichuan University used (Organic Lett. 2009, 11, 2848) a related diaryl prolinol TMS ether to direct the condensation of the readily-prepared phosphorane 20 with the unsaturated aldehyde 21 to give the cyclohexenone 22. Armando Córdova of Stockholm University also used (Tetrahedron Lett. 2009, 50, 3458) diphenyl prolinol TMS ether to mediate the addition of 24 to 23. The subsequent intramolecular aldol condensation proceeded with high diastereocontrol, leading to 25. Benjamin List of the Max-Planck Institut, Mülheim employed (Nat. Chem. 2009, 1, 225) a MacMillan catalyst for the reductive cyclization of 26.


2016 ◽  
Vol 1 (5) ◽  
pp. 4-12
Author(s):  
David P. Kuehn

This report highlights some of the major developments in the area of speech anatomy and physiology drawing from the author's own research experience during his years at the University of Iowa and the University of Illinois. He has benefited greatly from mentors including Professors James Curtis, Kenneth Moll, and Hughlett Morris at the University of Iowa and Professor Paul Lauterbur at the University of Illinois. Many colleagues have contributed to the author's work, especially Professors Jerald Moon at the University of Iowa, Bradley Sutton at the University of Illinois, Jamie Perry at East Carolina University, and Youkyung Bae at the Ohio State University. The strength of these researchers and their students bodes well for future advances in knowledge in this important area of speech science.


Author(s):  
Tat'yana V. Baranova ◽  

The present article is dedicated to the problems of the organization and planning of scientific and research work of students of the University in English classes, gives grounds for the purposes and tasks of such competence-forming activity as part of the “Oriental studies” speciality program, the Russian State University for the Humanities. The article analyzes these competences, as well as forms and methods of their formation and development. The author presents demarcation of scientific knowledge and gives its characteristics: using most general qualities of a subject, objective reasoning, argumentativeness, results verifiability and reproducibility, consistency, practicality, capability to change, anticipating the future, making forecasts, methodological reflection. The author tried to analyze the reflexive component of scientific and research work of students in more detail. The article presents possible reflexive positions in the interaction between the teacher and the student and shows the dynamics of this interaction, i.e. gives a hierarchy of positions which the student can occupy in the educational process depending on how independent they are in their activity. The article also highlights the content of scientific and research work of students of the University in English classes on the basis of work with foreign texts in the macro-discourse for the “Oriental studies” speciality. The given foundations of the organization and content of scientific and research work of students have been regularly used in English language classes, as well as in optional forms of scientific activity. The students have shown good results and passion for this kind of work, which confirms the correctness of this approach.


Sign in / Sign up

Export Citation Format

Share Document