scholarly journals 'Student-Centered Volunteering' in the University System: The Case of CCE at Oregon State University

Author(s):  
Filiz Otay Demir ◽  
Sunil Khanna ◽  
Emily Bowling
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 551-551
Author(s):  
David Burdick ◽  
Karen Rose ◽  
Dana Bradley

Abstract Momentum is growing for the Age-Friendly University Network as proponents, primarily gerontology educators, have successfully encouraged university presidents to sign nonbinding pledged to become more age-friendly in programs and policies, endorsing 10 Age-Friendly University Principles. While this trend is inspiring, more is needed to fully achieve benefits for universities, students, communities, and older adults. Four presentations discuss innovative ways of deepening university commitment, weaving the principles into the fabric of the university. The first paper describes thematic content analysis from five focus groups with admissions and career services staff at Washington University in St. Louis and the recommendations that emerged for the provision of programs and services for post-traditional students. The second paper describes efforts to utilize community-impact internships and community partnerships to build support for Age-Friendly University initiatives at Central Connecticut State University, particularly in the context of the university’s recent Carnegie Foundation Engaged Campus designation. The third paper describes how Drexel University became Philadelphia’s first Age-Friendly University and current efforts in the Drexel College of Nursing and Heatlh Care Profession’s AgeWell Collaboratory to convene university-wide leadership for an AFU Steering Committee working on four mission-driven efforts to ensure AFU sustainability. The fourth paper describes steps taken by AFU proponents at Western Oregon State University to gain endorsement from university leadership and community, including mapping the 10 AFU Principles to the university’s strategic plan, faculty senate endorsement, and survey/interview results of older community members’ use of the university, which collectively have enhanced deeper and broader campus buy-in of AFU.


2021 ◽  
Vol 113 ◽  
pp. 00060
Author(s):  
N.V. Levchenko ◽  
O.V. Kitikar

The article is devoted to the problem of multicultural education at the university, considering the personality-oriented approach to teaching. Here are the results of the implementation of the program aimed at increasing the educational motivation of students. The program and research are being implemented in the pedagogical areas of training full-time students of the Kaluga State University named after K.E. Tsiolkovsky. The discipline “Pedagogy” and its modules have, according to the authors, ample opportunities for the implementation of the idea of multicultural education in a higher educational institution, taking into account personality-oriented technologies and taking into account the multinational student environment of the university. The authors propose to strengthen the multicultural aspect of the content of the discipline under consideration by introducing changes into the program that will significantly increase the motivation of students to learn. The implementation of this approach is to develop the content of the discipline “Pedagogy” considering the multicultural student environment of the university.


Author(s):  
Douglass Taber

Richard J. K. Taylor of the University of York has developed (Angew. Chem. Int. Ed. 2008, 47, 1935) the diasteroselective intramolecular Michael cyclization of phosphonates such as 2. Quenching of the cyclized product with paraformaldehyde delivered ( + )-Paeonilactone B 3. Roberto Fernández de la Pradilla of the CSIC, Madrid established (Tetrahedron Lett. 2008, 49, 4167) the diastereoselective intramolecular hetero Michael addition of alcohols to enantiomerically-pure acyclic sulfoxides such as 4 to give the allylic sulfoxide 5. Mislow-Evans rearrangement converted 5 into 6, the enantiomerically-pure core of Ethyl Deoxymonate B 7. The ellagitannins, represented by 10, are single atropisomers around the biphenyl linkage. David R. Spring of the University of Cambridge found (Organic Lett. 2008, 10, 2593) that the chiral constraint of the carbohydrate backbone of 9 directed the absolute sense of the oxidative coupling of the mixed cuprate derived from 9, leading to Sanguiin H-5 10 with high diastereomeric control. A key challenge in the synthesis of the solandelactones, exemplified by 14, is the stereocontrolled construction of the unsaturated eight-membered ring lactone. James D. White of Oregon State University found (J. Org. Chem. 2008, 73, 4139) an elegant solution to this problem, by exposure of the cyclic carbonate 11 to the Petasis reagent, to give 12. Subsequent Claisen rearrangement delivered the eight-membered ring lactone, at the same time installing the ring alkene of Solandelactone E 14. AD-mix usually proceeds with only modest enantiocontrol with terminal alkenes. None the less, Ian Paterson, also of the University of Cambridge, observed (Angew. Chem. Int. Ed. 2008, 47, 3016, Angew. Chem. Int. Ed. 2008, 47, 3021) that bis-dihydroxylation of the diene 17 proceeded to give, after acid-mediated cyclization, the bis-spiro ketal core 18 of Spirastrellolide A Methyl Ester 19 with high diastereocontrol.


Author(s):  
Douglass F. Taber

M. Kevin Brown of Indiana University prepared (J. Am. Chem. Soc. 2015, 137, 3482) the cyclobutane 3 by the organocatalyzed addition of 2 to the alkene 1. Karl Anker Jørgensen of Aarhus University assembled (J. Am. Chem. Soc. 2015, 137, 1685) the complex cyclobutane 7 by the addition of 5 to the acceptor 4, followed by conden­sation with the phosphorane 6. Zhi Li of the National University of Singapore balanced (ACS Catal. 2015, 5, 51) three enzymes to effect enantioselective opening of the epoxide 8 followed by air oxidation to 9. Gang Zhao of the Shanghai Institute of Organic Chemistry and Zhong Li of the East China University of Science and Technology added (Org. Lett. 2015, 17, 688) 10 to 11 to give 12 in high ee. Akkattu T. Biju of the National Chemical Laboratory combined (Chem. Commun. 2015, 51, 9559) 13 with 14 to give the β-lactone 15. Paul Ha-Yeon Cheong of Oregon State University and Karl A. Scheidt of Northwestern University reported (Chem. Commun. 2015, 51, 2690) related results. Dieter Enders of RWTH Aachen University constructed (Chem. Eur. J. 2015, 21, 1004) the complex cyclopentane 20 by the controlled com­bination of 16, 17, and 18, followed by addition of the phosphorane 19. Derek R. Boyd and Paul J. Stevenson of Queen’s University Belfast showed (J. Org. Chem. 2015, 80, 3429) that the product from the microbial oxidation of 21 could be protected as the acetonide 22. Ignacio Carrera of the Universidad de la República described (Org. Lett. 2015, 17, 684) the related oxidation of benzyl azide (not illustrated). Manfred T. Reetz of the Max-Planck-Institut für Kohlenforschung and the Philipps-Universität Marburg found (Angew. Chem. Int. Ed. 2014, 53, 8659) that cytochrome P450 could oxidize the cyclohexane 23 to the cyclohexanol 24. F. Dean Toste of the University of California, Berkeley aminated (J. Am. Chem. Soc. 2015, 137, 3205) the ketone 25 with 26 to give 27. Benjamin List, also of the Max-Planck-Institut für Kohlenforschung, reported (Synlett 2015, 26, 1413) a parallel investigation. Philip Kraft of Givaudan Schweiz AG and Professor List added (Angew. Chem. Int. Ed. 2015, 54, 1960) 28 to 29 to give 30 in high ee.


2017 ◽  
Vol 12 (2) ◽  
pp. 222-222
Author(s):  
Editors-in-Chief ◽  
Haruo Hayashi

The second JDR Award ceremony was held in Kasumigaseki, Japan, at November 22, 2016 and the certificate was given to the JDR award winner, Prof. Harry Yeh of Oregon State University (Prof. Shinji Sato of the University of Tokyo received it as a dupty). We congratulate the winner and sincerely wish for future success.


2019 ◽  
Vol 5 (4) ◽  
pp. 49
Author(s):  
TAIWO Isaac Babatope ◽  
ADEGOKE Victoria Adewunmi

This project was designed to investigate the relevance of internal audit operations in Nigerian universities to find out the extent to which an effective internal audit role has benefited the performance of the university system and how it could be used as an instrument to improve the management of the university. This was generated off by an unprecedented line up of corporate failures in the university system and how internal auditors have been belittled in the time of policy formulation and project implementation. The research employed survey research design by which data were generated through an administered questionnaire on the staff of the Internal Audit department as well as the review of available documents and records of the Ekiti State University. The data analysis used descriptive statistics and percentage analysis, and the hypotheses were tested using the t-test statistic. The research employed statistical package for social sciences (SPSS) software version 17.0 in the analysis of data and test of hypotheses which showed that internal audit operation has a relationship with the performance of the university system (t-cal = 17.306 > t-crit = 2.353 at 5% level of significance). The research is to contribute to new knowledge by describing the internal audit profile of the Nigerian Universities to assist the university management in policy formulation and execution of projects that will lead to a better chance to maintain world-class educational societies. The research conclusion was based on the findings that there is a significant relationship between the internal audit operations and the performance of the university system, and that the management must always seek the opinion and indulgence of the internal audit department before they engage in the formulation and implementation of any policy and execution of any project.


2017 ◽  
Vol 78 (6) ◽  
pp. 308
Author(s):  
ACRL ACRL

Cheryl A. Middleton, associate university librarian for learning and engagement, Oregon State University Libraries & Press, is the 80th president of ACRL.Lauren Pressley, director of the University of Washington (UW) Tacoma Library and associatedean of UW Libraries, has been elected vice-president/president-elect of ACRL.


2020 ◽  
Vol 7 (1) ◽  
pp. 452-462
Author(s):  
P. C. Ukaigwe ◽  
Innocent U. Igbozuruike

The study investigated planning the integration of technologies in higher institutions as a strategy for effective implementation of blended learning in universities in Rivers State. The design used was descriptive. The population of this study consisted of the 4,377 teaching staff in the three (3) public universities in Rivers State, comprising 2,348 male and 2,029 female teaching staff.  The universities are the University of Port Harcourt, Rivers State University and Ignatius Ajuru University of Education. The sample of this study was 590 elements, comprising 327 male and 263 female teaching staff that were drawn from the population using stratified random sampling technique. Instrument of data collection was a questionnaire that yielded a reliability index of 0.84, using test-retest and Pearson Product Moment Correlation techniques. The data generated were analysed using mean to answer research questions. z-test was used to test hypotheses at 0.05 significance level. Findings showed that aligning university's visions with the aspirations of full integration of blended learning into university system, provision of required communication networking infrastructures and modifying curriculum designs to become deliverable through blended learning mode are key ways of integrating blended learning in the university system. Recommendations made included that university managers should consider seriously, the advantages of blended learning in the school system, with a view to using planning to foster the integration of the learning innovation into the traditional face-to-face teaching and learning approach for improving students learning experiences and achievements.


Author(s):  
Douglass F. Taber

Shou-Fei Zhu of Nankai University developed (Angew. Chem. Int. Ed. 2014, 53, 13188) an iron catalyst that effected the enantioselective cyclization of 1 to 2. Bypassing diazo precursors, Junliang Zhang of East China Normal University used (Angew. Chem. Int. Ed. 2014, 53, 13751) a gold catalyst to cyclize 3 to 4. Taking advantage of energy transfer from a catalytic Ir complex, Chuo Chen of University of Texas Southwestern carried out (Science 2014, 346, 219) intramolec­ular 2+2 cycloaddition of 5, leading, after dithiane formation, to the cyclobutane 6. Intramolecular ketene cycloaddition has been limited in scope. Liming Zhang of the University of California Santa Barbara found (Angew. Chem. Int. Ed. 2014, 53, 9572) that intramolecular oxidation of an intermediate Ru vinylidene led to a species that cyclized to the cyclobutanone 8. James D. White of Oregon State University devised (J. Am. Chem. Soc. 2014, 136, 13578) an iron catalyst that mediated the enantioselective Conia-ene cyclization of 9 to 10. Xiaoming Feng of Sichuan University observed (Angew. Chem. Int. Ed. 2014, 53, 11579) that the Ni-catalyzed Claisen rearrangement of 11 proceeded with high diastereo- and enantiocontrol. The relative configuration of the product 12 was not reported. Robert H. Grubbs of Caltech showed (J. Am. Chem. Soc. 2014, 136, 13029) that ring opening cross metathesis of 13 with 14 delivered the Z product 15. Mn(III) cyclization has in the past required a stoichiometric amount of inorganic oxidant. Sangho Koo of Myong Ji University found (Adv. Synth. Catal. 2014, 356, 3059) that by adding a Co co- catalyst, air could serve as the stoichiometric oxidant. Indeed, 16 could be cyclized to 17 using inexpensive Mn(II). Matthias Beller of the Leibniz-Institüt für Katalyse prepared (Angew. Chem. Int. Ed. 2014, 53, 13049) the cyclohexene 20 by coupling the racemic alcohol 18 with the amine 19. Paultheo von Zezschwitz of Philipps-Universität Marburg added (Chem. Commun. 2014, 50, 15897) diethyl zinc in a conjugate sense to 21, then reduced the product to give 22. Depending on the reduction method, either diastereomer of the product could be made dominant. Nuno Maulide of the University of Vienna dis­placed (Angew. Chem. Int. Ed. 2014, 53, 7068) the racemic chloride 23 with diethyl zinc to give 24 as a single diastereomer.


Author(s):  
Douglass Taber

Yoshiji Takemoto of Kyoto University designed (Organic Lett. 2009, 11, 2425) an organocatalyst for the enantioselective conjugate addition of alkene boronic acids to γ-hydroxy enones, leading to 1 in high ee. Attempted Mitsunobu coupling led to the cyclopropane 2, while bromoetherification followed by intramolecular alkylation delivered the cyclopropane 3. Jeffrey W. Bode of the University of Pennsylvania demonstrated (Organic Lett. 2009, 11, 677) a remarkable dichotomy in the reactivity of N-heterocyclic carbenes. A triazolium precatalyst combined 4 and 5 to give 6, whereas an imidazolium precatalyst combined 4 and 5 to give 7. Xinmiao Liang of the Dalian Institute of Chemical Physics and Jinxing Ye of the East China University of Science and Technology devised (Organic Lett. 2009, 11, 753) a Cinchona -derived catalyst that converted the prochiral cyclohexenone 8 into the diester 10 in high ee. Rich G. Carter of Oregon State University found (J. Org. Chem. 2009, 74, 2246) a simple sulfonamide-based proline catalyst that effected the Mannich condensation of the prochiral ketone with ethyl glyoxalate 12 and the amine 13, leading to the amine 14. In the first pot of a concise, three-pot synthesis of (-)-oseltamivir, Yujiro Hayashi of the Tokyo University of Science combined (Angew. Chem. Int. Ed. 2009, 48, 1304) 15 and 16 in the presence of a catalytic amount of diphenyl prolinol TMS ether to give an intermediate nitro aldehyde. Addition of the phosphonate 17 led to a cyclohexenecarboxylate, that on the addition of the thiophenol 18 equilibrated to the ester 19. Ying-Chun Chen of Sichuan University used (Organic Lett. 2009, 11, 2848) a related diaryl prolinol TMS ether to direct the condensation of the readily-prepared phosphorane 20 with the unsaturated aldehyde 21 to give the cyclohexenone 22. Armando Córdova of Stockholm University also used (Tetrahedron Lett. 2009, 50, 3458) diphenyl prolinol TMS ether to mediate the addition of 24 to 23. The subsequent intramolecular aldol condensation proceeded with high diastereocontrol, leading to 25. Benjamin List of the Max-Planck Institut, Mülheim employed (Nat. Chem. 2009, 1, 225) a MacMillan catalyst for the reductive cyclization of 26.


Sign in / Sign up

Export Citation Format

Share Document