Seismic Hazard in Syria Based on Completeness Analysis and Assessment

2018 ◽  
Vol 13 (1) ◽  
pp. 153-167
Author(s):  
Ahmed Alhourani ◽  
Junji Kiyono ◽  
Aiko Furukawa ◽  
Hussam Eldein Zaineh ◽  
◽  
...  

An important criterion for conducting an accurate seismic hazard analysis and assessment is the compiling of a representative and completehistorical seismic catalog for the region of interest. This paper describes the procedure to assemble a full earthquake events catalog for Syria from the years 37 AD to 2011 AD. The procedure starts with improving the quality of the compiled full catalog by eliminating manmade events by choosing a cutoff magnitude of 2.5; and by eliminating the potential aftershocks and afforeshcks using an appropriate declustering method. To examine the quality of the resultant seismic catalog (after eliminating artificial, aftershock and afforeshok earthquake) the magnitude of completeness (MC) was calculated and the distribution of MC with time showed an overall good quality of the adopted complete catalog. The adopted complete seismic catalog is then used to generate peak ground acceleration hazard maps for 475, 1000 and 2475 years return periods. The study also concludes that to accommodate for the quiescence of the DSFS and potential undetected buildup and release of seismic energy it is important to introduce 1000 and 2475 years return periods seismic hazard maps especially in the design of important structures.

2020 ◽  
Vol 20 (6) ◽  
pp. 1639-1661
Author(s):  
Khalid Mahmood ◽  
Naveed Ahmad ◽  
Usman Khan ◽  
Qaiser Iqbal

Abstract. Probabilistic seismic hazard analysis of Peshawar District has been performed for a grid size of 0.01∘. The seismic sources for the target location are defined as the area polygon with uniform seismicity. The earthquake catalogue was developed based on the earthquake data obtained from different worldwide seismological networks and historical records. The earthquake events obtained at different magnitude scales were converted into moment magnitude using indigenous catalogue-specific regression relationships. The homogenized catalogue was subdivided into shallow crustal and deep-subduction-zone earthquake events. The seismic source parameters were obtained using the bounded Gutenberg–Richter recurrence law. Seismic hazard maps were prepared for peak horizontal acceleration at bedrock level using different ground motion attenuation relationships. The study revealed the selection of an appropriate ground motion prediction equation is crucial for defining the seismic hazard of Peshawar District. The inclusion of deep subduction earthquakes does not add significantly to the seismic hazard for design base ground motions. The seismic hazard map developed for shallow crustal earthquakes, including also the epistemic uncertainty, was in close agreement with the map given in the Building Code of Pakistan Seismic Provisions (2007) for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years, are also presented.


2006 ◽  
Vol 4 (2) ◽  
pp. 101-113
Author(s):  
Borko Bulajic ◽  
Miodrag Manic

This paper presents a review of the approaches to the probabilistic seismic hazard analysis as well as discussion regarding the selection of the appropriate methodology of probabilistic seismic hazard analysis for the territory of the Republic of Serbia. Use of the deductive approach has been suggested, as well as that the new Serbian seismic hazard maps should be expressed through the values of the peak ground acceleration, having in mind that the new hazard maps for the Republic of Serbia should be compiled in compliance with the recommendations of the Eurocode 8.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Seyed Hasan Mousavi-Bafrouei ◽  
Noorbakhsh Mirzaei ◽  
Elham Shabani

A unified catalog of earthquakes in Iran and adjacent regions (the area bounded in 22<sup>º</sup>-42<sup>º</sup>N and 42<sup>º</sup>-66<sup>º</sup>E) covering the period of 4<sup>th</sup> century B.C. through 2012 with M<sub>w</sub>≥4 is provided. The catalog includes all events for which magnitude have been determined by international agencies and most reliable individual sources. Since the recurrence time of maximum credible earthquake cannot be directly estimated from the m<sub>b</sub>, empirical formulae are established to convert m<sub>b</sub> to M<sub>s</sub>, m<sub>b</sub> to M<sub>w</sub> and M<sub>s</sub> to M<sub>w</sub> for each major seismotectonic province separately. The unified catalog is declustered using conjugated distance-time windows. In order to estimate completeness thresholds, magnitude-time (M-T) diagram and Stepp’s method are applied on the declustered catalog for each seismotectonic province. The magnitude of completeness (M<sub>c</sub>) decreases with development of local and regional seismic stations. The results of present study are particularly important in seismic hazard analysis in Iran.


2019 ◽  
Author(s):  
Khalid Mahmood ◽  
Usman Khan ◽  
Qaiser Iqbal ◽  
Naveed Ahmad

Abstract. The probabilistic seismic hazard analysis of Peshawar District has been conducted in for a grid size of 0.01. The seismic sources for the target location are defined as the area polygon with uniform seismicity for which, the earthquake catalogues were obtained from different worldwide seismological network data. The earthquake catalogues obtained in different magnitude scale was converted into moment magnitude using regression analysis. The homogenized catalogue was then further subdivided into shallow crustal and deep subduction zone earthquake events for which, the seismic source parameters were obtained using Bounded Gutenberg-Richter Recurrence law. The seismic hazard maps were prepared in term of PGA at bedrock using the different ground motion attenuation relationships. The study shows that; the selection of appropriate ground motion prediction equation is an important factor in deciding the seismic hazard of Peshawar District. The inclusion of deep subduction earthquake does not add significantly to the seismic hazard. The calculated seismic hazard map for shallow crustal earthquake after including the epistemic uncertainty was in close agreement to that developed by BCP-2007 for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years were then prepared.


Author(s):  
Girish Chandra Joshi ◽  
Mukat Lal Sharma

In the present study the authors evaluate uncertainties in the seismic hazard assessment for the Northern Indian region, based on the probabilistic seismic hazard analysis (PSHA). The newly compiled earthquake data has been treated for the quality, consistency, and homogeneity in a systematic manner to find out the uncertainties in every step of calculations. Based on the geological and tectonic setup, seismicity and other geophysical anomalies, a seismotectonic model of the region has been developed. The seismic hazard parameters are calculated based on giving proper weight to specific region. The peak ground acceleration (PGA) is estimated for various return periods for the Northern Indian region using a logic tree approach. The variation at the input level in terms of the source models and different Ground Motion Prediction Equations (GMPEs) is used. To examine into the effect of source modelling and GMPEs, the Coefficient of Variation (COV) maps have been generated. To encompass the region and for better resolution, the peak ground acceleration (PGA) is estimated at 15 minute intervals. The COV values due to all branch points in the logic tree decrease with distance from the source and conspicuous increase toward fault boundaries are observed.


2018 ◽  
Vol 195 ◽  
pp. 03019
Author(s):  
Rian Mahendra Taruna ◽  
Vrieslend Haris Banyunegoro ◽  
Gatut Daniarsyad

The Lombok region especially Mataram city, is situated in a very active seismic zone because of the existence of subduction zones and the Flores back arc thrust. Hence, the peak ground acceleration (PGA) at the surface is necessary for seismic design regulation referring to SNI 1726:2012. In this research we conduct a probabilistic seismic hazard analysis to estimate the PGA at the bedrock with a 2% probability of exceedance in 50 years corresponding to the return period of 2500 years. These results are then multiplied by the amplification factor referred from shear wave velocity at 30 m depth (Vs30) and the microtremor method. The result of the analysis may describe the seismic hazard in Mataram city which is important for building codes.


2013 ◽  
Vol 690-693 ◽  
pp. 1158-1167
Author(s):  
Li Fang Zhang ◽  
Yan Ju Peng ◽  
Zhen Ming Wang

In this study, we chose East China offshore areas as study region(N25°~41°,E117°~126°).According to the tectonic environments and characteristics of earthquake the seismotectonic units were established, taking Gaussian spatially smoothing only based on the input earthquake catalog, and fault-rupture-oriented elliptical smoothing to calculate the seismic activity rate in each cells. The maps for the distribution of horizontal peak ground acceleration with 10% probability of exceedance in 50 years were obtained through using the method of seismic hazard analysis based on cell source. While the total number of earthquakes unchanged, two-stage smoothing procedure deals with the error of epicenter location, contains the seismotectonic information in elliptical smoothing seismicity model. This method build up a simple and easy methodology of probabilistic seismic hazard analysis, especially for those place where not yet been clearly master the seismic tectonic information and with distributed Seismic activity.


2009 ◽  
Vol 9 (3) ◽  
pp. 865-878 ◽  
Author(s):  
K. S. Vipin ◽  
P. Anbazhagan ◽  
T. G. Sitharam

Abstract. In this work an attempt has been made to evaluate the seismic hazard of South India (8.0° N–20° N; 72° E–88° E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing the seismic hazard, the study area was divided into small grids of size 0.1°×0.1°, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.


Sign in / Sign up

Export Citation Format

Share Document