Mechanism Design of Anthropomorphic Robot Hand: Gifu Hand I

1999 ◽  
Vol 11 (4) ◽  
pp. 269-273 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Tsuneo Komatsu

This paper presents an anthropomorphic robot hand Gifu Hand I, to be used as a platform of robot hand for the study of dexterous manipulation. To perform grasping and manipulation like a human, the Gifu Hand I includes five fingers whose actuators are servomotors built in the palm and fingers. A thumb has four degreeof-freedom (DOF) and four joints, and fingers have three DOF and four joints. Two axes of joints near the palm cross orthogonally at one point like the human hand. The design concept of the anthropomorphic robot hand is presented and mechanisms and specifications of the developed robot hand are shown.

Author(s):  
Yunus Ziya Arslan ◽  
Yuksel Hacioglu ◽  
Yener Taskin ◽  
Nurkan Yagiz

Due to the dexterous manipulation capability and low metabolic energy consumption property of the human hand, many robotic hands were designed and manufactured that are inspired from the human hand. One of the technical challenges in designing biomimetic robot hands is the control scheme. The control algorithm used in a robot hand is expected to ensure the tracking of reference trajectories of fingertips and joint angles with high accuracy, reliability, and smoothness. In this chapter, trajectory-tracking performances of different types of widely used control strategies (i.e. classical, robust, and intelligent controllers) are comparatively evaluated. To accomplish this evaluation, PID, sliding mode, and fuzzy logic controllers are implemented on a biomimetic robot hand finger model and simulation results are quantitatively analyzed. Pros and cons of the corresponding control algorithms are also discussed.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


2012 ◽  
Vol 9 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Ramiro Velázquez ◽  
Hermes Hernández ◽  
Enrique Preza

This paper introduces a novel concept on reading assistive technologies for the blind: the TactoBook, a system that is able to translate entire electronic books (eBooks) to Braille code and to reproduce them in portable electronic Braille terminals. The TactoBook consists of a computer-based translator that converts fast and automatically any eBook into Braille. The Braille version of the eBook is then encrypted as a file and stored in a USB memory drive which is later inserted and reproduced in a compact, lightweight, and highly-portable tactile terminal. In particular, this paper presents a piezoelectric ultrasonic actuation approach to design and implement such portable Braille terminal. Actuating mechanism, design concept, first prototype, and performance results are presented and discussed.


Author(s):  
Venketesh N. Dubey ◽  
Richard M. Crowder

This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Tetsuya Mouri

Humanoid robot hands are expected to replace human hands in the dexterous manipulation of objects. This paper presents a review of humanoid robot hand research and development. Humanoid hands are also applied to multifingered haptic interfaces, hand rehabilitation support systems, sEMG prosthetic hands, telepalpation systems, etc. The developed application systems in our group are briefly introduced.


1993 ◽  
Vol 2 (3) ◽  
pp. 203-220 ◽  
Author(s):  
Robert N. Rohling ◽  
John M. Hollerbach ◽  
Stephen C. Jacobsen

An optimized fingertip mapping (OFM) algorithm has been developed to transform human hand poses into robot hand poses. It has been implemented to teleoperate the Utah/MIT Dextrous Hand by a new hand master: the Utah Dextrous Hand Master. The keystone of the algorithm is the mapping of both the human fingertip positions and orientations to the robot fingers. Robot hand poses are generated by minimizing the errors between desired human fingertip positions and orientations and possible robot fingertip positions and orientations. Differences in the fingertip workspaces that arise from kinematic dissimilarities between the human and robot hands are accounted for by the use of a priority based mapping strategy. The OFM gives first priority to the human fingertip position goals and the second to orientation.


Sign in / Sign up

Export Citation Format

Share Document