Development of the SCARA

2014 ◽  
Vol 26 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Hiroshi Makino ◽  

The Selective Compliance Assembly Robot Arm, or SCARA, is an industrial robot typical of those widely used in assembly processes. It was invented by Professor Makino of the University of Yamanashi, Japan, the author of this report, and developed by him in collaboration with his colleagues and industrial partners. The first prototype of the SCARA robot was built in 1978. Fundamental studies were done on the characteristics and usability of this prototype and the second one, built in 1980. In 1981, some industrial partners began to market their own versions of the SCARA. These models were called SCARA-type robots. This report recounts mainly the first stage of the development of the SCARA.

2008 ◽  
Vol 20 (1) ◽  
pp. 3-3
Author(s):  
Kazuo Yamafuji

The Journal of Robotics and Mechatronics is celebrating its 20th volume since its launch in 1989. As the JRM’s founding Editor-in-Chief, I would like to express my heartfelt gratitude to all of those persons and organizations that have helped make the JRM so successful. This is also a time for celebrating the development of three epoch-making robots in Japan between 1978 and 1997. Scara Robot: The Scara robot was developed in 1978 by Professor Hiroshi Makino of Yamanashi University and four Japanese companies – Fujitsu, Telmec, Ultrasonic Ind. Co., and Sankyo. As John Hartley wrote in ""The Industrial Robot"" (March 1982, UK), ""More startling, perhaps, was the announcement that IBM was to sell Sankyo Skilam robot in the USA as the IBM 7535. Most of Japanese robots were based on overseas designs. The exception, of course, is the Scara robot.” The Scara was honored as the first Japanese robot dedicated at the Robotic Pavillion at Carnegie Mellon University in 2006. Parallel Bicycle Robot: The parallel bicycle (PB) robot developed in 1986 by Professor Kazuo Yamafuji of the University of Electro-Communications was driven by a parallel bicycle consistting of a pair of parallel wheels and an inverted pendulum body supported on the wheel axis. The PB robot has been applied both to locomotion for mobile robots and to personal vehicles. It was first successfully commercialized as the Segway Personal Transporter developed by Dean Kamen in 2001 in the US. Applications to a humanoid drive were realized by Toyota in 2004 and by Hitachi in 2007. Biped Walking Robot: Honda introduced its epoch-making humanoid P2 with biped and double hand in 1997. Driven by an on-board battery, the biped robot walked smoothly for over 30 minutes at 4 km/h similar to a human being. Honda P2 movie surprised and delighted people worldwide, and its release of ASIMO in 2002 was an advanced type of P2. ASIMO has became the de facto standard of the biped humanoid and is expected to have many applications in social and industrial environments.


Author(s):  
Joanne Pransky

Purpose – This article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Yoky Matsuoka, the Vice President of Nest Labs. Matsuoka describes her career journey that led her from a semi-professional tennis player who wanted to build a robot tennis buddy, to a pioneer of neurobotics who then applied her multidisciplinary research in academia to the development of a mass-produced intelligent home automation device. Findings – Dr Matsuoka received a BS degree from the University of California, Berkeley and an MS and PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT). She was also a Postdoctoral Fellow in the Brain and Cognitive Sciences at MIT and in Mechanical Engineering at Harvard University. Dr Matsuoka was formerly the Torode Family Endowed Career Development Professor of Computer Science and Engineering at the University of Washington (UW), Director of the National Science Foundation Engineering Research Center for Sensorimotor Neural Engineering and Ana Loomis McCandless Professor of Robotics and Mechanical Engineering at Carnegie Mellon University. In 2010, she joined Google X as one of its three founding members. She then joined Nest as VP of Technology. Originality/value – Dr Matsuoka built advanced robotic prosthetic devices and designed complementary rehabilitation strategies that enhanced the mobility of people with manipulation disabilities. Her novel work has made significant scientific and engineering contributions in the combined fields of mechanical engineering, neuroscience, bioengineering, robotics and computer science. Dr Matsuoka was awarded a MacArthur Fellowship in which she used the Genius Award money to establish a nonprofit corporation, YokyWorks, to continue developing engineering solutions for humans with physical disabilities. Other awards include the Emerging Inventor of the Year, UW Medicine; IEEE Robotics and Automation Society Early Academic Career Award; Presidential Early Career Award for Scientists and Engineers; and numerous others. She leads the development of the learning and control technology for the Nest smoke detector and Thermostat, which has saved the USA hundreds of billions of dollars in energy expenses. Nest was sold to Google in 2013 for a record $3.2 billion dollars in cash.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.


Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry PhD and inventor regarding his pioneering efforts and the commercialization of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Ken Goldberg, an inventor working at the intersection of art, robotics, and social media. He joined the UC Berkeley faculty in 1995 where he is the UC Berkeley William S. Floyd Jr Distinguished Chair in Engineering and recently served as Chair of the Industrial Engineering and Operations Research Department. He has secondary appointments in UC Berkeley’s Electrical Engineering/Computer Science, Art Practice and the School of Information. Goldberg also holds an appointment at the UC San Francisco Medical School’s Department of Radiation Oncology where he pursues research in medical robotics. Goldberg is Director of the CITRIS “People and Robots” Initiative and the UC Berkeley’s Laboratory for Automation Science and Engineering (AUTOLAB) where he and his students research machine learning for robotics and automation in warehouses, homes, and operating rooms. In this interview, Goldberg shares some of his personal and business perspectives from his career-long pursuit of making robots less clumsy. Findings Goldberg earned dual BS degrees in Electrical Engineering and Economics from the University of Pennsylvania in 1984, and MS and PhD degrees in Computer Science from Carnegie Mellon University in 1990. Goldberg also studied at Edinburgh University and the Technion. From 1991-95 he taught at the University of Southern California, and in fall 2000, he was visiting faculty at the MIT Media Lab. Goldberg and his students pursue research in three primary areas: Geometric Algorithms for Automation, Cloud Robotics, and Robot Learning. Originality/value Goldberg developed the first complete algorithms for part feeding and part fixturing, and developed the first robot on the Internet. His inventions have been awarded nine US Patents. Goldberg has published over 250 peer-reviewed technical papers and edited four books. He co-founded and served as Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering (T-ASE). He is also Co-Founder of the Berkeley AI Research (BAIR) Lab, the Berkeley Center for New Media (BCNM), the African Robotics Network (AFRON), the Center for Automation and Learning for Medical Robotics (CAL-MR), the CITRIS Data and Democracy Initiative (DDI), Hybrid Wisdom Labs, and Moxie Institute. He has presented over four hundred keynote and invited lectures. Goldberg's artwork, closely linked with his research, has appeared in over seventy venues. Ken was awarded the Presidential Faculty Fellowship in 1995 by Bill Clinton, the Joseph Engelberger Robotics Award in 2000, elected IEEE Fellow in 2005, and selected by the IEEE Robotics and Automation Society for the George Saridis Leadership Award in 2016.


Sign in / Sign up

Export Citation Format

Share Document