A Path-Following Feedback Control Law of a Five-Axle, Three-Steering Coupled-Vehicle System

2014 ◽  
Vol 26 (5) ◽  
pp. 551-565 ◽  
Author(s):  
Hiroaki Yamaguchi ◽  
◽  
Ryota Kameyama ◽  
Atsushi Kawakami ◽  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/03.jpg"" width=""300"" />Experimental coupled-vehicle system</div> This paper presents a new path-following feedback control law of a five-axle, three-steering coupledvehicle system which enables specifying the movements and rotations of its two carriers quantitatively, according to the operating environment. The kinematical equations of the coupled-vehicle system are first converted into time differential equations in a threechain, single-generator chained form. The time differential equations in the chained form are secondly converted into new differential equations with a new variable. The new control law enables the relative orientation between the two carriers to be constant in either a straight-bed carrier configuration or a V-bed carrier configuration, and simultaneously enables the orientations of these carriers functioning as a single carrier relative to the direction of the tangent of the path to be changed quantitatively, according to the locations of obstacles for avoiding collision with them. Asymptotic stability of the new control law is guaranteed by the linear control theory and the Lyapunov’s second method. Especially, the form of the new differential equations facilitates the design of the Lyapunov functions. The validity of the new control law is verified by an experimental five-axle, three-steering coupledvehicle system. </span>

Author(s):  
Jianqin Wang ◽  
Zaojian Zou ◽  
Tao Wang

The paper studies the path following of a ship sailing in restricted waters based on an output feedback control, which consists of a state feedback control law and an extended updated-gain high-gain observer. According to the separation principle, the state feedback control and the extended updated-gain high-gain observer are designed separately. The state feedback control law is designed based on a robust guaranteed cost control method assuming that system states are measurable. Sufficient conditions are given for the control based on a linear uncertain system. The extended updated-gain high-gain observer, whose gains are updated according to the nonlinear functions of available evaluation errors, is used to reconstruct system states. Then the output feedback control is obtained by replacing states value in the state feedback control law with its estimation yielded by the state observer. Numerical simulations confirm the effectiveness of the proposed control method for the path following of a ship sailing in restricted waters.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 517-535 ◽  
Author(s):  
Maciej Michałek ◽  
Krzysztof Kozłowski

SUMMARYThe paper introduces a novel general feedback control framework, which allows applying the motion controllers originally dedicated for the unicycle model to the motion task realization for the car-like kinematics. The concept is formulated for two practically meaningful motorizations: with a front-wheel driven and with a rear-wheel driven. All the three possible steering angle domains for car-like robots—limited and unlimited ones—are treated. Description of the method is complemented by the formal stability analysis of the closed-loop error dynamics. The effectiveness of the method and its limitations have been illustrated by numerous simulations conducted for the three main control tasks, namely, for trajectory tracking, path following, and set-point regulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Chen ◽  
Chong Lin

This paper focuses on the problems of static output feedback control andH∞controller design for discrete-time switched systems. Based on piecewise quadratic Lyapunov functions and a new linearization method, new sufficient conditions for system stability andH∞controller design are obtained. Then, an improved path-following algorithm is built to solve the problems. Finally, the merits and effectiveness of the proposed method are shown by two numerical examples.


2016 ◽  
Vol 39 (3) ◽  
pp. 352-360 ◽  
Author(s):  
Xiaoyan Lin ◽  
Dongyun Lin ◽  
Weiyao Lan

The semi-global output regulation problem of multi-variable discrete-time singular linear systems with input saturation is investigated in this paper. A composite nonlinear feedback control law is constructed by using a low gain feedback technique for semi-global stabilisation of discrete-time singular linear systems with input saturation. The sufficient solvability conditions of the semi-global output regulation problem by composite nonlinear feedback control are established. When the composite nonlinear feedback control law is reduced to a linear control law, the solvability conditions are an exact discrete-time counterpart of the semi-global output regulation problem of continuous-time singular linear systems. With the extra control freedom of the nonlinear part in the composite nonlinear feedback control law, the transient performance of the closed-loop system can be improved by carefully choosing the linear feedback gain and the nonlinear feedback gain. The design procedure of the composite nonlinear feedback control law and the improvement of the transient performance are illustrated by a numerical example.


Sign in / Sign up

Export Citation Format

Share Document