scholarly journals ASSESSMENT OF THE PROGRESS OF INTEGRATED PEST MANAGEMENT PRODUCTS IMPLEMENTATION INTO AGRICULTURAL PRODUCTION SPACE

Author(s):  
Kinga ZATOŃ ◽  
◽  
Magdalena BŁASZAK ◽  
Author(s):  
Jesse Eiben

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. Integrated Pest Management (IPM) is an ecosystem management operational framework to make ecologically and economically sound environmental management decisions in ways that are selective for the pest encountered while minimizing effects not related to the problem at hand. The strength of IPM research and use is to constantly adapt methods and applications of the science behind adaptive decision making to ensure that the most modern and comprehensive problem-solving skills and techniques will be used to manage pest issues. Pests are ubiquitous in every human-managed ecosystem, most commonly encountered in production agriculture and forestry. Pests are also encountered by homeowners and in other environmental management regimes related to ecological restoration, just to name a few IPM use situations. IPM has been practiced by humans throughout the development of human agricultural practices, for major stable food and fiber crops since the advent of agriculture. However, the specific scientific discipline of truly integrating multiple management techniques, from pesticide application, to fertilizer regimes, to resistant plant variety selection, to ecological and cultural management, and finally to cost-benefit analyses to ensure the techniques used are comprehensive for the pest and the rest of the agricultural production system is a relatively new science, first rigorously tested and reviewed in the 1940s. The greatest strengths of the discipline are also its weakness; by being pest-taxon, crop specific, and flexible for a given environmental or management situation, there is a constant need for refinement of IPM decision making processes in very specific situations to be the most efficient and useful in a given pest situation. Given the number of sub-discipline inputs into the robust decision-making framework, many specialists need to be invested in the specific IPM program, or a highly trained and dedicated group must be accountable for wrangling diverse disciplines into a cohesive management regime. Finally, given the vast number of pests and pathogens that affect a production system, it is nearly impossible to have an IPM program for every crop, for every pest, in every system; yet this is what is called upon from the farmers or land managers in nearly every situation. Given the modern push to have answers ready at the push of a button, the discipline of IPM will continue to be refined to remain relevant and at the forefront of safe, efficient, environmentally accountable, and ultimately sustainable sciences in modern ever-changing agricultural production systems.


Economies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 64
Author(s):  
Timothy C. Durham ◽  
Tamás Mizik

Agricultural production systems are a composite of philosophy, adoptability, and careful analysis of risks and rewards. The two dominant typologies include conventional and organics, while biotechnology (GM) and Integrated Pest Management (IPM) represent situational modifiers. We conducted a systematic review to weigh the economic merits—as well as intangibles through an economic lens—of each standalone system and system plus modifier, where applicable. Overall, 17,485 articles were found between ScienceDirect and Google Scholar, with 213 initially screened based on putative relevance. Of those, 82 were selected for an in-depth analysis, with 63 ultimately used. Economically, organic generally outperformed conventional systems. This is largely due to their lower production costs and higher market price. However, organic farms face lower yields, especially in the fruit, vegetable, and animal husbandry sectors. With that said, organic farming can provide significant local environmental benefits. Integrated pest management (IPM) is a potentiator of either core system. As a risk reduction and decision-making framework, it is labor intensive. However, this can be offset by input reductions without yield penalty compared to a conventional baseline. Biotechnology is a rapidly emerging production system, notably in developing countries. The use of GM crops results in lower production cost and higher yields. As a conventional modifier, its major advantage is scale-neutrality. Thus, smaller and lower income farmers may achieve higher gross margin. The main source of environmental benefits is reduced pesticide use, which implies a decreased need for fuel and labor. Barring external influences such as subsidies and participation in prescriptive labeling programs, farmers should focus on an a la carte approach (as opposed to discrete system adoption) to optimize their respective enterprises.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Elizabeth H. Beers ◽  
Adrian Marshall ◽  
Jim Hepler ◽  
Josh Milnes

2004 ◽  
Vol 10 (3) ◽  
pp. 22-25
Author(s):  
Sally Y. Shelton ◽  
John E. Simmons ◽  
Tom J.K. Strang

Sign in / Sign up

Export Citation Format

Share Document