Genomic Characterization of Sickle Cell Mouse Models for Therapeutic Genome Editing Applications

Author(s):  
◽  
Kaitly Woodard ◽  

Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (HBB), resulting in abnormal hemoglobin molecules that polymerize when deoxygenated, forming “sickle” shaped red blood cells (RBCs). Sickle RBCs lead to anemia, multi-organ damage and pain crises, beginning the first year of life. The onset of symptoms coincides with the developmental switch of β-like globin gene expression from fetal stage γ-globin to adult stage β-globin, resulting in a shift from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2β2). Some individuals harbor rare genetic variants in the extended β-globin gene cluster that cause constitutively elevated postnatal HbF, a benign condition known as hereditary persistence of fetal hemoglobin (HPFH) which alleviates symptoms of co-inherited SCD. Previously, we showed that CRISPR-Cas9-mediated genome editing can recreate a naturally occurring HPFH variant in the γ-globin (HBG1 and HBG2) promoters. Disruption of a TGACC nucleotide motif within this region by Cas9-mediated non-homologous end joining in human erythroid cells or their progenitors caused induction of HbF by interfering with recruitment of the transcriptional repressor, BCL11A. This strategy results in potent HbF induction in human cells and is a promising therapeutic strategy. However, the efficiency of genome editing and the level of HbF induction required to arrest or reverse the pathologies of SCD are unknown. In this work, we investigated the utility of humanized mouse models for SCD to answer this question. We further characterized the genomic configurations of two models: Berkeley mice, which harbor multiple tandem copies of three separate transgenes encoding human α-globin, sickle β-globin (βS) and a segment of the locus control region (LCR) a powerful enhancer that drives high-level erythroid-specific expression of linked genes; and Townes mice, in which the endogenous α-globin gene is replaced by the homologous human gene and the endogenous β-globin gene is replaced by human γ-globin (γA) and βS-globin genes. Genome editing of human γ-globin promoter in the Berkeley mouse induced a massive DNA damage response and cell death caused by the accumulation of multiple double-stranded DNA breaks (DSB) within the highly repetitive human transgene. In contrast, it was possible to achieve high-level editing of the single copy human γ-globin gene in the Townes model. However, induction of HbF was approximately 10-fold less that what occurred after generating the same edits in human cells, possibly because the mouse model lacks essential non-coding DNA regulatory sequences. Together, these limitations rule out the Berkeley mouse for DSB-inducing gene-editing purposes and the Townes mouse for HbF induction by regulatory element targeting. Despite these limitations, we determined the Townes model to be a good candidate for a base editing strategy to directly alter the SCD mutation. This work sought to edit the sickle T to a G, resulting in the Hb G-Makassar variant suspected to be benign and non-sickling. Recipient mice transplanted with successfully edited (55-60%) Townes HbSS Lin- cells show marked improvement in blood count values and splenomegaly. This Hb G-Makassar strategy allows for a better understanding of the levels of hematopoietic stem cell editing required to correct the SCD phenotype.

2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 640-640 ◽  
Author(s):  
Elizabeth Traxler ◽  
Yu Yao ◽  
Chunliang Li ◽  
Jeremy Grevet ◽  
Peng Huang ◽  
...  

Abstract Manipulating the developmental switch from γ- to β-globin expression that occurs after birth has been intensively investigated as therapeutic strategy for sickle cell anemia and β-thalassemia. Rare individuals with a benign condition termed hereditary persistence of fetal hemoglobin (HPFH) exhibit an attenuated or absent γ-to-β switch, resulting in high levels of fetal hemoglobin (α2γ2) in all red blood cells (RBCs) throughout life. Moreover, individuals with HPFH and homozygosity for sickle cell disease (SCD) mutations exhibit few or no clinical manifestations of the latter. We used genome editing to induce a naturally occurring 13-nucleotide (-102 to -114) deletional HPFH mutation in the γ-globin (HBG1) gene promoter. Heterozygosity for this mutation is associated with HbF levels > 30% in adults. We used the clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system to create small deletions around -102 to -114 in the γ-globin genes in peripheral blood CD34+ cells from healthy donors. We delivered guide RNA (gRNA) and Cas9 using lentiviruses, sorted transduced hematopoietic progenitors by FACS, and cultured them using a 3-phase erythroid differentiation protocol. Real time PCR showed that γ-globin mRNA increased more than 10-fold in Cas9/gRNA transduced cells compared to controls. HbF flow cytometry and high-performance liquid chromatography (HPLC) demonstrated that induced γ-globin chains were effectively incorporated into hemoglobin tetramers. HPLC revealed 1-3% HbF in negative controls and an increase to 15% in cells transduced with gRNA and Cas9. Expression of erythroid differentiation markers CD235 and CD71 were unaffected, suggesting that the γ-globin increase is not due to impaired erythroid maturation. Next generation sequencing demonstrated that a single gRNA created one predominant mutation that co-segregated with high HbF expression and represented over 50% of the sequencing coverage. Interestingly, this mutation is identical to the 13-nucleotide HPFH deletion. We also tested the gRNA mutation efficiency after transient expression of gRNA and Cas9 in human CD34+ cells by electroporation followed by analysis of single burst-forming unit-erythroid (BFU-E) colonies formed in methylcellulose. Genomic DNA analysis revealed that one gRNA targeted 50% of HBG1 alleles, and cells that received two overlapping gRNAs demonstrated 80% mutation frequency. Real-time PCR of mRNA from edited BFU-Es showed that mutations stimulated γ-globin mRNA expression to 19-55% total globin synthesis, whereas control colonies contained 1-5% γ-globin. Together, our data demonstrate that the CRISPR-Cas9 system can generate precisely the -102 to -114 HPFH mutation at high efficiency in primary human progenitor cells and thereby induce the expression of HbF to potentially therapeutic levels. This work provides proof of concept for targeted genome editing for γ-globin activation as a therapy for patients with β hemoglobinopathies. Disclosures Weiss: Biogen: Research Funding; GlaxoSmithKline: Consultancy; Rubius: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3377-3377
Author(s):  
Carolina A Braghini ◽  
Fernando F Costa ◽  
Flavia C Costa ◽  
Halyna Fedosyuk ◽  
Matthew Parker ◽  
...  

Abstract Fetal hemoglobin (HbF) is a major genetic modifier of the phenotypic heterogeneity in patients with the major β-globin disorders sickle cell disease (SCD) and β-thalassemia. Although the normal level of HbF postnatally is approximately 1% of total hemoglobin, some individuals have a condition known as hereditary persistence of fetal hemoglobin (HPFH), characterized by elevated synthesis of γ-globin in adulthood. HPFH is caused by small or large deletions in the β-globin locus (deletional HPFH), or point mutations in the Aγ-globin or Gγ-globin gene promoters (non-deletional HPFH). Pharmacological agents such as butyrate, decitabine, and hydroxyurea are effective in inducing HbF in vitro and in vivo. To date, hydroxyurea is the only drug approved for clinical use in sickle cell patients, although the efficacy level is variable between patients and the long-term effects of this drug remain uncertain. Therefore, current research has focused on elucidating the pathways involved in the maintenance/reactivation of γ-globin gene expression in adult life. Many studies have demonstrated the role of stage-specific transcription factors in β-like globin gene switching, indicating their potential as therapeutic targets in the treatment of β-hemoglobinopathies. In order to better understand the molecular pathways involved in the regulating γ-globin gene expression, we used β-YAC transgenic mice, produced with a 213 Kb β-globin locus yeast artificial chromosome, containing a 187 Kb human chromosomal insert encompassing the entire 82 Kb β-globin locus from 5'HS5 of the LCR to 3'HS1, approximately 20 Kb downstream from the β-globin gene. Four different transgenic mouse lines were included in this study: 1) wild β-YAC mice, with the normal sequence of the human β-globin locus; 2) mutant β-YAC mice with the Aγ-globin -117 G>A HPFH mutation 3) mutant β-YAC mice with the Aγ-globin -175 T>C HPFH mutation, and 4) mutant β-YAC mice with the Aγ-globin -195 T>C HPFH mutation. Adult -175 and -195 mutant β-YAC mice displayed an HPFH phenotype with an increased level of HbF. As measured by HPLC, -175 HPFH mice had the highest average level of γ-globin chains [16.4% γ/(γ+β)], followed by -195 HPFH mice (8.4%). Wild-type β-YAC control mice averaged 2.8% and -117 Greek HPFH β-YAC control mice displayed an average of 7.4%. Measurement of Aγ-globin mRNA by RNase protection analysis (RNAP) supported the HPLC data; γ/(γ+β) was 34%, 12.1%, 14.1% and less than 0.5% for -175 HPFH, -195 HPFH, -117 HPFH and wild-type β-YAC animals, respectively. Relative mRNA levels as determined by RT-qPCR were consistent with the RNAP results. Currently, we are examining our -175 and -195 HPFH mice for pancellular versus heterocellular distribution of HbF. To examine the molecular basis for the -175 and 195 HPFH phenotypes, fetal livers of these animals were collected on day E18 of gestation, after the fetal-to-adult β-like globin switch occurred, for chromatin immunoprecipitation (ChIP) analysis of transcription factor/co-factor binding, including YY1, PAX1, TAL1, LMO2 and LDB1. Previous unpublished DNA-protein array and ChIP data, comparing human primary erythroid cell cultures from normal donors and -195 HPFH individuals, showed a 6-fold enrichment of YY1 recruitment to the -195 region of the normal Aγ-globin promoter and a 5-fold enrichment of PAX1 recruitment to the HPFH mutant promoter, suggesting that YY1 may act as an A γ-globin gene repressor and PAX1 may be an activator when the -195 mutation is present. Preliminary ChIP experiments in β-YAC mice showed a similar pattern with YY1 enriched 2-fold in wild-type mice and PAX1 enriched 2-fold in -195 HPFH animals. Regarding -175 HPFH and wild-type β-YAC samples, we found occupancy enrichment of LMO2, TAL1 and LDB1 proteins (1.5-fold, 9-fold and 2.5-fold, respectively) in the -175 region of the Aγ-globin gene promoter in -175 HPFH β-YAC mice. Recently published studies in cell lines have shown that these three proteins form a complex with GATA-1 to mediate long-range interactions between the LCR and β-like globin genes. These mouse models provide additional tools for studying the regulation of γ-globin gene expression and may reveal new targets for selectively activating HbF. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2472-2472
Author(s):  
Sang Hyun Lee ◽  
Maxim Soloviev ◽  
Yan Zhang ◽  
Valerie Roman ◽  
Gengjie Yang ◽  
...  

Abstract Sickle cell disease (SCD) is an autosomal recessive genetic disorder caused by a point mutation in the human β-globin gene. Patients harboring this mutation can exhibit long-chain polymers of hemoglobin and sickle-shaped red blood cells, and suffer from severe medical manifestations including hemolysis and vaso-occlusive crises. Multiple preclinical, clinical and epidemiologic studies have shown that the levels of unmutated fetal hemoglobin (HbF encoded by the γ-globin gene) correlate with less severe disease, validating HbF induction as a therapeutic approach in SCD. Treatment with hydroxyurea (HU), the only approved therapy for SCD, results in a variable induction of HbF and significant improvement in the frequency of pain crises. However, a significant percentage of patients treated with HU fail to exhibit durable benefit, necessitating the need for alternative therapeutic agents. The human γ-globin gene is repressed in the post-natal period by epigenetic mechanisms, and therefore may lend itself to pharmacological intervention aimed at derepressing gene expression. One of the most important of these epigenetic mechanisms is catalyzed by lysine-specific demethylase 1 (LSD1), a histone demethylase that removes mono-/dimethyl marks from the lysine 4 and 9 residues of histone H3 through an FAD-directed redox process. Here, we report the characterization of selective, potent, and orally bioavailable LSD1 inhibitors from two classes - FAD-directed inhibitors that achieve inhibitory activity through formation of covalent FAD-adducts and non-FAD-directed, reversible inhibitors - and demonstrate their ability to induce γ-globin gene expression in murine and primate preclinical models. In the Towne's SCD mouse model, oral administration of LSD1 inhibitors significantly increased HbF+ cell (F cell) production. Concurrent with the increase in F cells, sickle cell numbers, reticulocyte counts, and bilirubin levels were all markedly reduced, indicating an amelioration of several pathophysiological features of SCD. FAD- and non-FAD-directed LSD1 inhibitors were more effective than HU in increasing F cells production, and the combination of HU and suboptimal doses of LSD1 inhibitors resulted in a greater induction of F cells and more pronounced reductions in reticulocyte counts and bilirubin levels. In addition to the humanized SCD model, HbF induction in response to LSD1 inhibitor treatment was evaluated in non-anemic cynomolgus monkeys. Oral administration of LSD1 inhibitors significantly induced F cells and HbF in a dose-dependent manner and over a sustained period (>50 days) following the discontinuation of treatment. The percentage of induced F cells in total RBCs was linearly correlated with the percentage of HbF protein induced by LSD1 inhibition. Taken together, these results support the potential utility of LSD1 inhibition as a novel therapeutic approach to increase HbF production. Disclosures Lee: Incyte Corporation: Employment, Other: Stock. Soloviev:Incyte Corporation: Employment, Other: Stock. Zhang:Incyte Corporation: Employment, Other: Stock. Roman:Incyte Corporation: Employment, Other: Stock. Yang:Incyte Corporation: Employment, Other: Stock. Bowman:Incyte Corporation: Employment, Other: Stock. Burke:Incyte Corporation: Employment, Other: Stock. Margulis:Incyte Corporation: Employment, Other: Stock. O'Connor:Incyte Corporation: Employment, Other: Stock. Yang:Incyte Corporation: Employment, Other: Stock. Wu:Incyte Corporation: Employment, Other: Stock. Wynn:Incyte Corporation: Employment, Other: Stock. Burn:Incyte Corporation: Employment, Other: Stock. Shuey:Incyte Corporation: Employment, Other: stock. Diamond:Incyte Corporation: Employment, Other: Stock. Yao:Incyte Corporation: Employment, Other: Stock. Hollis:Incyte Corporation: Employment, Other: Stock. Yeleswaram:Incyte Corporation: Employment, Other: Stocks. Roberts:Incyte Corporation: Employment, Other: Stock. Huber:Incyte Corporation: Employment, Other: Stock. Scherle:Incyte Corporation: Employment, Other: Stock. Ruggeri:Incyte Corporation: Employment, Other: Stock.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 1111-1117 ◽  
Author(s):  
YC Chang ◽  
KD Smith ◽  
RD Moore ◽  
GR Serjeant ◽  
GJ Dover

Five factors have been shown to influence the 20-fold variation of fetal hemoglobin (Hb F) levels in sickle cell anemia (SS): age, sex, the alpha-globin gene number, beta-globin haplotypes, and an X-linked locus that regulates the production of Hb F-containing erythrocytes (F cells), ie, the F-cell production (FCP) locus. To determine the relative importance of these factors, we studied 257 Jamaican SS subjects from a Cohort group identified by newborn screening and from a Sib Pair study. Linear regression analyses showed that each variable, when analyzed alone, had a significant association with Hb F levels (P < .05). Multiple regression analysis, including all variables, showed that the FCP locus is the strongest predictor, accounting for 40% of Hb F variation. beta-Globin haplotypes, alpha-globin genes, and age accounted for less than 10% of the variation. The association between the beta-globin haplotypes and Hb F levels becomes apparent if the influence of the FCP locus is removed by analyzing only individuals with the same FCP phenotype. Thus, the FCP locus is the most important factor identified to date in determining Hb F levels. The variation within each FCP phenotype is modulated by factors associated with the three common beta-globin haplotypes and other as yet unidentified factor(s).


Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1292-1296 ◽  
Author(s):  
FS Collins ◽  
CD Boehm ◽  
PG Waber ◽  
CJ Jr Stoeckert ◽  
SM Weissman ◽  
...  

Abstract Hereditary persistence of fetal hemoglobin (HPFH) is a genetically heterogeneous and clinically benign condition characterized by persistent expression of fetal hemoglobin (Hb F) into adulthood. In the G gamma beta + type, no major deletions in the globin gene cluster occur; adult heterozygotes produce approximately 20% Hb F, which results from overproduction of G gamma chains, with no apparent increase in production from the adjacent A gamma gene. We have recently described a point mutation 202 base pairs 5′ to the cap site of the G gamma gene in an individual with G gamma beta + HPFH. This mutation abolishes a normal ApaI restriction endonuclease site, and thus can be detected by blotting of genomic DNA. We present here further data on the ApaI mutation: (1) It occurs in six of seven families with G gamma beta + HPFH. (2) In three families, detailed haplotype analysis using 11 polymorphic restriction sites in the beta globin cluster has been done. The two that carry the missing ApaI site are identical but the third, which has a normal ApaI pattern, differs from the other two in at least two sites, one of which is a new polymorphic Nco I site between the delta and beta globin genes. This suggests the possibility of a different HPFH mutation in the third family. (3) The haplotype of the G gamma beta + HPFH chromosome carrying the ApaI mutation is different from that of 108 beta A chromosomes of black individuals that have been tested. (4) The G gamma ApaI site is normal in 61 beta A and 109 beta S alleles from non-HPFH black individuals, including 22 who share the same haplotype for the intragenic G gamma, A gamma HindIII polymorphisms. These data add support to the possibility that the -202 mutation is actually causative of the G gamma beta + HPFH phenotype.


2019 ◽  
Vol 3 (21) ◽  
pp. 3379-3392 ◽  
Author(s):  
Jean-Yves Métais ◽  
Phillip A. Doerfler ◽  
Thiyagaraj Mayuranathan ◽  
Daniel E. Bauer ◽  
Stephanie C. Fowler ◽  
...  

Key Points Cas9 editing of the γ-globin gene promoters in hematopoietic stem cells (HSCs) increases red cell HbF by ≤40%. No deleterious effects on hematopoiesis or off-target mutations were detected 16 weeks after xenotransplantation of edited HSCs.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

Abstract alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Sign in / Sign up

Export Citation Format

Share Document