scholarly journals A Survey on Design and Optimization of Microstrip Patch Antenna

Author(s):  
Shrutika Kansal ◽  
Ashok Kumar

Microstrip patch antenna is among the important elements of modern wireless communication systems and hence its designing and optimization has become an important aspect for improving the overall performance of the system. In this paper microstrip patch antenna geometry has been discussed along with the performance analysis of various papers over which the survey was conducted. The main objective behind writing this paper is to provide researchers with background of microstrip patch antenna geometries and optimization techniques so as to make it easier for researchers to choose the method best suited to their aims. Future scope of the study is also given which will help in further advancements in the optimization of microstrip patch antenna.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


This paper a compact V- shaped slotted microstrip antenna is designed and utilized in the various communication systems. The most common important parameters are improved .The results of the measured and simulated results for V-slotted microstrip patch antenna has been analyzed . The V slotted patch antenna has been designed to tested in laboratory .The measured and simulated results are exhibits good agreement. The proposed antenna achieved 174MHz of bandwidth at resonance frequency of 2.4 GHz with VSWR ≤ 2. The antenna constructed at centre frequency of 2.44 GHz. The antenna has been designed and simulated using Ansoft HFSS software tools. Then, the antenna parameters are varied in a specific intervals and analysis the designed Patch antenna. Then antenna bandwidth can be enhanced by increasing the substrate thickness. The measured resonant frequency is found 2.592 GHz. The measured value of the bandwidth of the antenna is 75 MHz. Then, the variation of parameters and its performance are investigated.


This paper proposes a compact sized dual band microstrip patch antenna with microstrip feed line. The patch of antenna is a rectangular shaped patch which has a circular slot in the patch for multiband operations. This antenna covers frequency bands, centered at 2.4GHz, 3.3GHz, which is useful for the C-band and X-band operations. In this paper, a microstrip patch antenna with compact size of 21x17x1.6 mm in rectangular shape. This antenna is designed on FR4 substrate (Dielectric constant=4.4) of thickness h=1.6mm with ground of size 25x10 mm. The proposed structure were simulated on CADFEKO simulation software. This proposed antenna is suitable for multiband wireless communication systems and mobile equipments.


Author(s):  
Raad H. Thaher ◽  
Noor Baqir Hassan

A P-shaped microstrip patch antenna is proposed and studied to obtain operating bandwidth of (5.883-9.9) GHz. Then the antenna is extended by etching slots in the ground plane to be (5.73 – 10.234) GHz and gain varies from 2.809 dBi to 4.947 dBi. The antenna is installed on FR-4 substrate having relative dielectric constant of  = 4.3 and loss tangent of 0.02. The antenna size is (30×30×1.6)  simulation results were obtained using CST software 2016. The proposed was fabricated and tested by vector network analyzer VNA and noted reasonable agreement between simulated and measured result.


Sign in / Sign up

Export Citation Format

Share Document