scholarly journals Comparison of machine learning techniques for SoC and SoH evaluation from impedance data of an aged lithium ion battery

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Davide Aloisio ◽  
Giuseppe Campobello ◽  
Salvatore Gianluca Leonardi ◽  
Francesco Sergi ◽  
Giovanni Brunaccini ◽  
...  

<p class="Abstract"><span lang="EN-US">State of charge estimation and ageing evolution of lithium ion (Li-Ion) batteries are key points for their massive applications in the market. However, the battery behavior is very complex to understand because many parameters act in determining their ageing evolution. Therefore, traditional analytical models employed for this purpose are often affected by inaccuracy. In this context, machine learning techniques can provide a viable alternative to traditional models and a useful tool to characterize the batteries behavior. </span></p><p class="Abstract"><span lang="EN-US">In this work, different machine learning techniques were applied to model the impedance evolution over time of an aged cobalt based Li-Ion battery, cycled under a stationary frequency regulation profile for grid application. The different ML techniques were compared in terms of accuracy to determine the state of charge and the state of health over the battery ageing phenomena. Experimental results showed that ML based on Random Forest algorithm can be profitably used for this purpose.</span></p>

Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


2020 ◽  
Vol 69 ◽  
pp. 765-806
Author(s):  
Senka Krivic ◽  
Michael Cashmore ◽  
Daniele Magazzeni ◽  
Sandor Szedmak ◽  
Justus Piater

We present a novel approach for decreasing state uncertainty in planning prior to solving the planning problem. This is done by making predictions about the state based on currently known information, using machine learning techniques. For domains where uncertainty is high, we define an active learning process for identifying which information, once sensed, will best improve the accuracy of predictions. We demonstrate that an agent is able to solve problems with uncertainties in the state with less planning effort compared to standard planning techniques. Moreover, agents can solve problems for which they could not find valid plans without using predictions. Experimental results also demonstrate that using our active learning process for identifying information to be sensed leads to gathering information that improves the prediction process.


2020 ◽  
pp. 1577-1597
Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Sign in / Sign up

Export Citation Format

Share Document