scholarly journals Role of spindle pole body component 25 in neurodegeneration

2021 ◽  
Vol 9 (18) ◽  
pp. 1432-1432
Author(s):  
Feilun Cui ◽  
Zhipeng Xu ◽  
Yumei Lv ◽  
Jianpeng Hu
2012 ◽  
Vol 198 (5) ◽  
pp. 785-791 ◽  
Author(s):  
Heather Edgerton-Morgan ◽  
Berl R. Oakley

A γ-tubulin mutation in Aspergillus nidulans, mipA-D159, causes failure of inactivation of the anaphase-promoting complex/cyclosome (APC/C) in interphase, resulting in failure of cyclin B (CB) accumulation and removal of nuclei from the cell cycle. We have investigated the role of CdhA, the A. nidulans homologue of the APC/C activator protein Cdh1, in γ-tubulin–dependent inactivation of the APC/C. CdhA was not essential, but it targeted CB for destruction in G1, and APC/CCdhA had to be inactivated for the G1–S transition. mipA-D159 altered the localization pattern of CdhA, and deletion of the gene encoding CdhA allowed CB to accumulate in all nuclei in strains carrying mipA-D159. These data indicate that mipA-D159 causes a failure of inactivation of APC/CCdhA at G1–S, perhaps by altering its localization to the spindle pole body, and, thus, that γ-tubulin plays an important role in inactivating APC/CCdhA at this point in the cell cycle.


2010 ◽  
Vol 30 (8) ◽  
pp. 2057-2074 ◽  
Author(s):  
Masayuki Onishi ◽  
Takako Koga ◽  
Aiko Hirata ◽  
Taro Nakamura ◽  
Haruhiko Asakawa ◽  
...  

ABSTRACT During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.


2010 ◽  
Vol 21 (5) ◽  
pp. 753-766 ◽  
Author(s):  
Claudia Lang ◽  
Sandrine Grava ◽  
Mark Finlayson ◽  
Rhonda Trimble ◽  
Peter Philippsen ◽  
...  

In the multinucleate fungus Ashbya gossypii, cytoplasmic microtubules (cMTs) emerge from the spindle pole body outer plaque (OP) in perpendicular and tangential directions. To elucidate the role of cMTs in forward/backward movements (oscillations) and bypassing of nuclei, we constructed mutants potentially affecting cMT nucleation or stability. Hyphae lacking the OP components AgSpc72, AgNud1, AgCnm67, or the microtubule-stabilizing factor AgStu2 grew like wild- type but showed substantial alterations in the number, length, and/or nucleation sites of cMTs. These mutants differently influenced nuclear oscillation and bypassing. In Agspc72Δ, only long cMTs were observed, which emanate tangentially from reduced OPs; nuclei mainly moved with the cytoplasmic stream but some performed rapid bypassing. Agnud1Δ and Agcnm67Δ lack OPs; short and long cMTs emerged from the spindle pole body bridge/half-bridge structures, explaining nuclear oscillation and bypassing in these mutants. In Agstu2Δ only very short cMTs emanated from structurally intact OPs; all nuclei moved with the cytoplasmic stream. Therefore, long tangential cMTs promote nuclear bypassing and short cMTs are important for nuclear oscillation. Our electron microscopy ultrastructural analysis also indicated that assembly of the OP occurs in a stepwise manner, starting with AgCnm67, followed by AgNud1 and lastly AgSpc72.


2018 ◽  
Vol 29 (15) ◽  
pp. 1798-1810
Author(s):  
Meenakshi Agarwal ◽  
Hui Jin ◽  
Melainia McClain ◽  
Jinbo Fan ◽  
Bailey A. Koch ◽  
...  

The budding yeast centrosome, often called the spindle pole body (SPB), nucleates microtubules for chromosome segregation during cell division. An appendage, called the half bridge, attaches to one side of the SPB and regulates SPB duplication and separation. Like DNA, the SPB is duplicated only once per cell cycle. During meiosis, however, after one round of DNA replication, two rounds of SPB duplication and separation are coupled with homologue segregation in meiosis I and sister-chromatid segregation in meiosis II. How SPB duplication and separation are regulated during meiosis remains to be elucidated, and whether regulation in meiosis differs from that in mitosis is unclear. Here we show that overproduction of the half-bridge component Kar1 leads to premature SPB separation during meiosis. Furthermore, excessive Kar1 induces SPB overduplication to form supernumerary SPBs, leading to chromosome missegregation and erroneous ascospore formation. Kar1-­mediated SPB duplication bypasses the requirement of dephosphorylation of Sfi1, another half-bridge component previously identified as a licensing factor. Our results therefore reveal an unexpected role of Kar1 in licensing meiotic SPB duplication and suggest a unique mechanism of SPB regulation during budding yeast meiosis.


2018 ◽  
Vol 131 (11) ◽  
pp. jcs211425
Author(s):  
Beryl Augustine ◽  
Cheen Fei Chin ◽  
Foong May Yeong

Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 29-43 ◽  
Author(s):  
E O Shuster ◽  
B Byers

Abstract Mutations in the Start class of cell division cycle genes (CDC28, CDC36 and CDC39) define the point in the G1 phase of the vegetative cycle at which the cell becomes committed to completing another round of cell division. Genetic, cytological and biochemical data demonstrate that these mutations cause meiotic cells to become arrested at pachytene following completion of both chromosomal DNA replication and spindle pole body (SPB) duplication. In contrast these mutations have previously been found to cause arrest of the mitotic cell cycle prior to either of these landmark events, so the role of the Start genes in these events during vegetative growth must be indirect. Our observations are consistent with the hypothesis that CDC28, CDC36 and CDC39 are required for irreversible commitment to nuclear division in both the mitotic and meiotic pathways. CDC28 was additionally found to be required for the SPB separation that precedes spindle formation in preparation for the second meiotic division. Cytological and genetic analyses of this requirement revealed both that such separation may fail independently at either SPB and that ascospore formation can proceed independently of SPB separation.


Sign in / Sign up

Export Citation Format

Share Document