scholarly journals Field measurement and monitoring of hydrodynamic and suspended sediment within the Seven Mile Island Innovation Laboratory, New Jersey

2021 ◽  
Author(s):  
Kelsey Fall ◽  
David Perkey ◽  
Zachary Tyler ◽  
Timothy Welp

The Seven Mile Island Innovation Laboratory (SMIIL) was launched in 2019 to evaluate beneficial use of dredge material management practices in coastal New Jersey. As part of that effort, the Philadelphia District requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, collect data to characterize the hydrodynamics and turbidity within the central portions of the SMIIL prior to and during dredge material placement. Pre-dredge monitoring found that apart from punctuated wind events, the study area waters were generally calm and clear with small waves, <0.25 m, slow current speeds (~0.1 m/s), low turbidity (~10 ntus), and low suspended sediment concentrations (~10–20 mg/L). In March 2020, 2,475 m³ of dredged sediment was placed on the northern portion of Sturgeon Island within the SMIIL. Turbidity in the waters surrounding the island was monitored to quantify extent of the sediment plume resulting from the placement. Observations found little to no turbidity plume associated with the dredging operations beyond 20 m from the island and that the plume was largely limited to areas near a tidal creek draining the placement area. Additionally, turbidity levels quickly returned to background conditions at times when the dredge was not in operation.

2021 ◽  
Author(s):  
Jennifer McAlpin ◽  
Jason Lavecchia

The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.


Author(s):  
Drew Allan Loney ◽  
Kimberly Collins Pevey ◽  
Jennifer Tate McAlpin ◽  
Benjamin Wright Nelsen ◽  
Brent Harry Hargis

Logistical and combat operations in riverine, estuarine, and coastal environments remain a key military focus due to limited maneuverability, imperfect knowledge, and rapidly changing constraints. Vessel operation in water environments can be enhanced by routing algorithms that integrate mission parameters with environmental data and vessel specifications. These algorithms must update predetermined routes in a timely manner as parameters and specifications change. The US Army Engineer Research and Development Center Coastal and Hydraulics Laboratory is developing the capability for military planners to rapidly optimize vessel routes in water environments by extending capabilities of the Rapid Operational Access and Maneuver Support (ROAMS) modeling platform. The ROAMS platform allows users to rapidly generate models of a water environment in limited-information conditions, utilizing the Adaptive Hydraulics and STeady-state spectral WAVE computational engines for the base two-dimensional hydrodynamics and waves, respectively. Routing capabilities are built on path search and penalty-barrier optimization to automatically produce routes that account for temporally changing environmental variables and vessel maneuverability. This work outlines the components of the ROAMS routing package and presents a case study using ROAMS in a northeastern American metropolitan area. Benefits and limitations of the ROAMS routing platform are discussed and future improvements are suggested.


2021 ◽  
Author(s):  
Jeremy Sharp ◽  
Locke Williams ◽  
Duncan Bryant ◽  
Jake Allgeier ◽  
Kevin Pigg ◽  
...  

The US Army Corps of Engineers, Louisville District, requested the support and assistance of the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), in the evaluation of the hydraulic performance of the replacement Outlet Works for Rough River Dam. To support the design effort, CHL constructed a 1:25.85 scale physical model. The proposed features of the model in the domain are the curved approach channel, intake structure, transition, curved conduit, stilling basin, concrete apron, and retreat channel. Tests performed to evaluate the hydraulic performance illuminated a few design concerns. To address these issues, several key design changes were made. These included the retreat channel slope, end sill design, and transition design.


2021 ◽  
Author(s):  
Jennifer McAlpin ◽  
Cassandra Ross

The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Engineer District, Galveston (SWG), requested the Engineer Research and Development Center, Coastal and Hydraulics Laboratory, perform hydrodynamic and sediment modeling of proposed modifications in Galveston and Trinity Bays and along the HSC. The modeling results are necessary to provide data for hydrodynamic, salinity, and sediment transport analysis. SWG provided three project alternatives that include closing Rollover Pass, Bay Aquatic Beneficial Use System cells, Bird Islands, and HSC modifications. These alternatives and a Base (existing condition) will be simulated for present (2029) and future (2079) conditions. The results of these alternatives/conditions as compared to the Base are presented in this report. The model shows that the mean salinity varies by 2–3 ppt due to the HSC channel modifications and by approximately 5 ppt in the area of East Bay due to the closure of Rollover Pass. The tidal prism increases by 2.5% to 5% in the alternatives. The tidal amplitudes change by less than 0.01 m. The residual velocity vectors vary in and around areas where project modifications are made.


2021 ◽  
Author(s):  
S. Martin ◽  
Larry Daggett ◽  
Morgan Johnston ◽  
Chris Hewlett ◽  
Kiara Pazan ◽  
...  

In 2020, the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, provided technical oversight during a navigation study to assist the Galveston District evaluation of different channel widening alternatives for larger ships transiting the Houston Ship Channel (HSC), Texas. The widening proposals encompassed several areas of the HSC including the Bay Section, the Bayport Ship Channel, Barbours Cut Channel, and the Bayou Section. The study was performed at the San Jacinto College Maritime Technology and Training Center (SJCMTTC) Ship/Tug Simulator (STS) Facility in La Porte, TX. The SJCMTTC STS is a real-time simulator; therefore, events on the simulator happen at the same time rate as real life. A variety of environmental forces act upon the ship during the simulation transit. These include currents, wind, waves, bathymetry, and ship-to-ship interaction. Online simulations of the project were conducted at SJCMTTC over a 3-week period – May through June 2020. Several mariners including Houston Pilots and G&H tugboat Captains participated in the testing and validation exercises. ERDC oversight was performed remotely because of the COVID-19 pandemic. Results in the form of engineering observations, track plots, and pilot interviews were reviewed to develop final conclusions and recommendations regarding the final design.


Sign in / Sign up

Export Citation Format

Share Document