scholarly journals Development of Recycling Technologies, and Functional Material Formation by Hydrothermal Processes

2003 ◽  
Vol 111 (1298) ◽  
pp. 709-715 ◽  
Author(s):  
Nakamichi YAMASAKI
2019 ◽  
Vol 57 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Marta Wesołowska-Trojanowska ◽  
Marta Tomczyńska-Mleko ◽  
Konrad Terpiłowski ◽  
Siemowit Muszyński ◽  
Katsuyoshi Nishinari ◽  
...  

2010 ◽  
Vol 1247 ◽  
Author(s):  
Rocío Calderón-Villajos ◽  
Carlos Zaldo ◽  
Concepción Cascales

AbstractControlled reaction conditions in simple, template-free hydrothermal processes yield Tm-Lu2O3 and Tm-GdVO4 nanocrystals with well-defined specific morphologies and sizes. In both oxide families, nanocrystals prepared at pH 7 reaction media exhibit photoluminescence in ∼1.95 μm similar to bulk single crystals. For the lowest Tm3+ concentration (0.2 % mol) in GdVO4 measured 3H4 and 3F4 fluorescence lifetimes τ are very near to τrad.


iScience ◽  
2021 ◽  
pp. 102798
Author(s):  
Benjamin Lazarus ◽  
Charul Chadha ◽  
Audrey Velasco-Hogan ◽  
Josiane D.V. Barbosa ◽  
Iwona Jasiuk ◽  
...  
Keyword(s):  

Prosthesis ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 25-52
Author(s):  
Pelin Erkoc ◽  
Fulden Ulucan-Karnak

Biocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 355
Author(s):  
Maria Rampilova ◽  
Anna Doroshkevich ◽  
Shrinivas Viladkar ◽  
Elizaveta Zubakova

The main mass of the Sevathur carbonatite complex (Tamil Nadu, India) consists of dolomite carbonatite with a small number of ankerite carbonatite dikes. Calcite carbonatite occurs in a very minor amount as thin veins within the dolomite carbonatite. The age (207Pb/204Pb) of the Sevathur carbonatites is 801 ± 11 Ma, they are emplaced within the Precambrian granulite terrains along NE–SW trending fault systems. Minor minerals in dolomite carbonatite are fluorapatite, phlogopite (with a kinoshitalite component), amphibole and magnetite. Pyrochlore (rich in UO2), monazite-Ce, and barite are accessory minerals. Dolomite carbonatite at the Sevathur complex contains norsethite, calcioburbankite, and benstonite as inclusions in primary calcite and are interpreted as primary minerals. They are indicative of Na, Sr, Mg, Ba, and LREE enrichment in their parental carbonatitic magma. Norsethite, calcioburbankite, and benstonite have not been previously known at Sevathur. The hydrothermal processes at the Sevathur carbonatites lead to alteration of pyrochlore into hydropyrochlore, and Ba-enrichment. Also, it leads to formation of monazite-(Ce) and barite-II.


Author(s):  
Alejandro Ayala-Cortés ◽  
Pedro Arcelus-Arrillaga ◽  
Marcos Millan ◽  
Camilo A. Arancibia-Bulnes ◽  
Patricio J. Valadés-Pelayo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document