scholarly journals Mineralogy of Dolomite Carbonatites of Sevathur Complex, Tamil Nadu, India

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 355
Author(s):  
Maria Rampilova ◽  
Anna Doroshkevich ◽  
Shrinivas Viladkar ◽  
Elizaveta Zubakova

The main mass of the Sevathur carbonatite complex (Tamil Nadu, India) consists of dolomite carbonatite with a small number of ankerite carbonatite dikes. Calcite carbonatite occurs in a very minor amount as thin veins within the dolomite carbonatite. The age (207Pb/204Pb) of the Sevathur carbonatites is 801 ± 11 Ma, they are emplaced within the Precambrian granulite terrains along NE–SW trending fault systems. Minor minerals in dolomite carbonatite are fluorapatite, phlogopite (with a kinoshitalite component), amphibole and magnetite. Pyrochlore (rich in UO2), monazite-Ce, and barite are accessory minerals. Dolomite carbonatite at the Sevathur complex contains norsethite, calcioburbankite, and benstonite as inclusions in primary calcite and are interpreted as primary minerals. They are indicative of Na, Sr, Mg, Ba, and LREE enrichment in their parental carbonatitic magma. Norsethite, calcioburbankite, and benstonite have not been previously known at Sevathur. The hydrothermal processes at the Sevathur carbonatites lead to alteration of pyrochlore into hydropyrochlore, and Ba-enrichment. Also, it leads to formation of monazite-(Ce) and barite-II.

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 556
Author(s):  
Mikhail Nikolaevich Kruk ◽  
Anna Gennadievna Doroshkevich ◽  
Ilya Romanovich Prokopyev ◽  
Ivan Aleksandrovich Izbrodin

The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 397 ◽  
Author(s):  
Alexandre Néron ◽  
Léo Bédard ◽  
Damien Gaboury

The Saint-Honoré carbonatite complex hosts a rare earth element (REE) deposit traditionally interpreted as being produced by late-stage hydrothermal fluids that leached REE from apatite or dolomite found in the early units and concentrated the REE in the late-stage units. New evidence from deeper units suggest that the Fe-carbonatite was mineralized by a combination of both magmatic and hydrothermal crystallization of rare earth minerals. The upper Fe-carbonatite has characteristics typical of hydrothermal mineralization—polycrystalline clusters hosting bastnäsite-(Ce), which crystallized radially from carbonate or barite crystals, as well as the presence of halite and silicification within strongly brecciated units. However, bastnäsite-(Ce) inclusions in primary magmatic barite crystals have also been identified deeper in the Fe-carbonatite (below 1000 m), suggesting that primary crystallization of rare earth minerals occurred prior to hydrothermal leaching. Based on the intensity of hydrothermal brecciation, Cl depletion at depth and greater abundance of secondary fluid inclusions in carbonates in the upper levels, it is interpreted that hydrothermal activity was weaker in this deepest portion, thereby preserving the original magmatic textures. This early magmatic crystallization of rare earth minerals could be a significant factor in generating high-volume REE deposits. Crystallization of primary barite could be an important guide for REE exploration.


1996 ◽  
Vol 60 (401) ◽  
pp. 639-646 ◽  
Author(s):  
C. Terry Williams

AbstractThe compositions and textural relationships of the oxide minerals zirconolite, pyrochlore and baddeleyite are described. These occur as accessory minerals, often intergrown with each other, from a phoscorite rock associated with the Kovdor carbonatite complex. Both the zirconolite and baddeleyite have relatively high concentrations of Nb and Ta; the pyrochlore is rich in U and Ta. Backscattered electron images, coupled with detailed microprobe analyses, reveal complex compositional zoning in zirconolite and pyrochlore which reflect changes in the fluid composition during growth of these minerals. A comparison is made of incompatible element ratios Zr/Hf, Nb/Ta and Th/U between the three accessory minerals.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 442 ◽  
Author(s):  
Frances Chikanda ◽  
Tsubasa Otake ◽  
Yoko Ohtomo ◽  
Akane Ito ◽  
Takaomi D. Yokoyama ◽  
...  

Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites.


2019 ◽  
Vol 111 ◽  
pp. 102969 ◽  
Author(s):  
Christian A.F. Dietzel ◽  
Tim Kristandt ◽  
Sven Dahlgren ◽  
R. Johannes Giebel ◽  
Michael A.W. Marks ◽  
...  

1994 ◽  
Vol 65 (1-4) ◽  
pp. 167-181 ◽  
Author(s):  
M Natarajana ◽  
B Bhaskar Rao ◽  
R Parthasarathy ◽  
Anil Kumar ◽  
K Gopalan

2017 ◽  
Vol 59 (4) ◽  
pp. 315-340 ◽  
Author(s):  
V. B. Savelyeva ◽  
E. P. Bazarova ◽  
V. V. Sharygin ◽  
N. S. Karmanov ◽  
S. V. Kanakin

Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 355 ◽  
Author(s):  
Ondřej Krátký ◽  
Vladislav Rapprich ◽  
Martin Racek ◽  
Jitka Míková ◽  
Tomáš Magna

Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in pyroxenites. The chemical composition of the pyroxenes differs among individual enclaves, with variable proportions of diopside, kosmochlor and jadeite-aegirine end-members. These compositions fill a previously unoccupied space in the kosmochlor-diopside-jadeite+aegirine ternary plot, indicating a distinct origin of kosmochlor-rich pyroxene compared with previous findings from diverse settings. The Na–Cr-rich clinopyroxene has low ΣREE = 9.2 ppm, with slight enrichment in LREE (LaN = 7), coupled with low HREE (YbN = 0.6), and flat HREE, paralleled by a significant fractionation of Nb/Ta (2408) and Th/U (26.5). Sodic metasomatism (fenitization) associated with either carbonatite emplacement at shallow levels or during carbonatite ascent through the upper mantle most likely was the major process operating in the area. We suggest two scenarios of the formation of Na–Cr-rich pyroxene: (1) from mantle-derived chromian mineral phases (spinel and/or garnet) through fenitization, with subsequent corrosion by growing winchite due to volatile influx; (2) via metasomatic reaction of Cr-rich garnet in mantle peridotite due to reaction with Na-rich carbonatite melt. Collectively, the appearance of kosmochlor may play an important role in deconvolving metasomatic processes, and fenitization in particular. If combined with petrologic experiments, it could improve our understanding of the origin and subsequent history of chemical signatures of carbonate-rich materials in the mantle.


Sign in / Sign up

Export Citation Format

Share Document