Cyclicity and facies relationships at the interaction between aeolian, fluvial, and playa depositional environments in the Upper Rotliegend: Regional correlation across UK (Sole Pit Basin), the Netherlands, and Germany

Author(s):  
MATTEO MINERVINI ◽  
MASSIMO ROSSI ◽  
DONATELLA MELLERE
2021 ◽  
Author(s):  
Jordan Walker ◽  
Sally Potter-McIntyre

<p>Mollies Nipple—a butte located in the Grand Staircase-Escalante National Monument (GSENM)—is of special interest because of the presence of unusual alunite and jarosite cements within the caprock. These minerals precipitate in hyperacidic environments (pH1-2) and are not stable over ~pH5; yet they are abundant on Mars where they are used to interpret depositional and diagenetic environments. The caprock at Mollies Nipple is historically interpreted as Navajo Sandstone via photogeologic mapping; however, it is ~200 m above the mapped upper extent of the Navajo Sandstone in this region. The units overlying the Navajo Sandstone have complex stratigraphic relations in this region and the caprock could be the Carmel or Temple Cap Formations, or the Page Sandstone. This study aims to characterize Mollies Nipple through measured sections, mineralogical analyses, palynomorph analysis, and radiometric age dates from ash lenses present in the caprock. The results will better define the stratigraphy of Mollies Nipple and determine the regional correlation of the caprock. Ultimately, this work will contribute to the understanding of how alunite and jarosite were precipitated at Mollies Nipple; why these minerals are still present at Mollies Nipple, and potentially revise the understanding of Martian depositional environments.</p>


1980 ◽  
Vol 27 (1) ◽  
pp. 1-81 ◽  
Author(s):  
M.J.M. Bless ◽  
J. Bouckaert ◽  
R. Conil ◽  
E. Groessens ◽  
W. Kasig ◽  
...  

2000 ◽  
Vol 79 (2-3) ◽  
pp. 135-145 ◽  
Author(s):  
J.H.A. Bosch ◽  
P. Cleveringa ◽  
T. Meijer

AbstractA historical outline of the Eemian research in the Netherlands is presented as an introduction to recent research in the type area. At the end of the 19th and during the first part of the 20th century, Eemian sediments were recognized because of the presence of lusitanian and mediterranean mollusc species. From 1930 onwards, pollen analysis made it possible to identify also non-shell-bearing deposits and to equate them with the Eemian. At the same time this technique proved a valuable tool for understanding the vegetation development during this interglacial. Pollen zonation offered a unique possibility for the correlation of terrestrial sequences in North-West Europe.The type area of the Eemian, near Amersfoort, was described by Harting in 1874 and was comprehensively restudied by Zagwijn (1961). A pollen zonation was introduced as a standard for the Netherlands, allowing the correlation of pollen records from both marine and non-marine depositional environments. This enabled a more detailed temporal resolution, resulting in a better understanding of the distribution of the various environments in the type area.In the northern and central parts of the Netherlands, the identification of the marine sequence was, apart from the occurrence of the specific mollusc fauna, facilitated by the presence of a till of Saalian age underlying the Eemian deposits. The presence of deep glacial basins in these areas enabled the deposition and preservation of a complete Eemian record in a marine setting. Sediment accumulation in the basins began immediately following deglaciation at the end of the Saalian. The Eemian type sections at Amersfoort are situated near the margin of one of these basins.Recent research of the Eemian focused on the integration of lithostratigraphic evidence and information on the sedimentary environment as derived from diatoms, dinoflagellates, foraminifers, molluscs and pollen.


2012 ◽  
Vol 49 (12) ◽  
pp. 1478-1503 ◽  
Author(s):  
Kathleen M. Gould ◽  
David J.W. Piper ◽  
Georgia Pe-Piper

Facies analysis in outcrops on land is strongly dependent on the lateral variability of lithofacies. Interpretation of conventional core in wells relies principally on the vertical succession of lithofacies. To better understand depositional environments and reservoir sandstone connectivity, the lithofacies of reservoir sandstones sampled in conventional core were correlated laterally through two sets of closely spaced wells in the Scotian Basin: in the Barremian–Albian succession around the Panuke–Cohasset field and in the Late Jurassic succession west of the Venture field. Regional correlation by gamma logs is confirmed by lithologically similar transgressive units including shelly mudstones or coals. A standard scheme of lithofacies and recognition of three types of parasequences were used for comparisons between wells. Some transgressive surfaces are of limited extent and may represent delta distributary switching and subsidence rather than regional changes in sea level. Major sandstone packets extend at least 10–30 km laterally, but commonly show lateral changes in lithofacies, and some are bounded by the margins of incised valleys. Such packages show poor correlation of lithofacies with porosity and permeability, probably because of the variable effects of diagenesis. Lateral transitions from tidal estuary sandstones in Panuke B-90 to thick-bedded river-mouth turbidites in Lawrence D-14, over a distance of 15 km, demonstrates the scale of delta lobes and confirms that sharp-based sandstone beds are turbidites related to river floods, not storm deposits. Similar lateral transitions in the Venture field are on a similar scale and pass distally into prodeltaic muddy landslide deposits.


2000 ◽  
Vol 79 (2-3) ◽  
pp. 135-160 ◽  
Author(s):  
J.H.A. Bosch ◽  
P. Cleveringa ◽  
T. Meijer

AbstractA historical outline of the Eemian research in the Netherlands is presented as an introduction to recent research in the type area. At the end of the 19th and during the first part of the 20th century, Eemian sediments were recognized because of the presence of lusitanian and mediterranean mollusc species. From 1930 onwards, pollen analysis made it possible to identify also non-shell-bearing deposits and to equate them with the Eemian. At the same time this technique proved a valuable tool for understanding the vegetation development during this interglacial. Pollen zonation offered a unique possibility for the correlation of terrestrial sequences in North-West Europe.The type area of the Eemian, near Amersfoort, was described by Harting in 1874 and was comprehensively restudied by Zagwijn (1961). A pollen zonation was introduced as a standard for the Netherlands, allowing the correlation of pollen records from both marine and non-marine depositional environments. This enabled a more detailed temporal resolution, resulting in a better understanding of the distribution of the various environments in the type area.In the northern and central parts of the Netherlands, the identification of the marine sequence was, apart from the occurrence of the specific mollusc fauna, facilitated by the presence of a till of Saalian age underlying the Eemian deposits. The presence of deep glacial basins in these areas enabled the deposition and preservation of a complete Eemian record in a marine setting. Sediment accumulation in the basins began immediately following deglaciation at the end of the Saalian. The Eemian type sections at Amersfoort are situated near the margin of one of these basins.Recent research of the Eemian focused on the integration of lithostratigraphic evidence and information on the sedimentary environment as derived from diatoms, dinoflagellates, foraminifers, molluscs and pollen.


2020 ◽  
pp. 1-13
Author(s):  
Feiyang Chen ◽  
Glenn A. Brock ◽  
Marissa J. Betts ◽  
Zhiliang Zhang ◽  
Hao Yun ◽  
...  

Abstract Major progress has recently been made regarding the biostratigraphy, lithostratigraphy and isotope chemostratigraphy of the lower Cambrian successions in South Australia, in particular of the Arrowie Basin, which has facilitated robust global stratigraphic correlations. However, lack of faunal and sedimentological data from the lower Cambrian Normanville Group in the eastern Stansbury Basin, South Australia – particularly the transition from the Fork Tree Limestone to the Heatherdale Shale – has prevented resolution of the age range, lithofacies, depositional environments and regional correlation of this succession. Here we present detailed sedimentologic, biostratigraphic and chemostratigraphic data through this transition in the eastern Stansbury Basin. Three lithofacies are identified that indicate a deepening depositional environment ranging from inner-mid-shelf (Lithofacies A and B) to outer shelf (Lithofacies C). New δ13C chemostratigraphic data capture global positive excursion III within the lower Heatherdale Shale. Recovered bradoriid Sinskolutella cuspidata supports an upper Stage 2 (Micrina etheridgei Zone). The combined geochemistry and palaeontology data reveal that the lower Heatherdale Shale is older than previously appreciated. This integrated study improves regional chronostratigraphic resolution and interbasinal correlation, and better constrains the depositional setting of this important lower Cambrian package from the eastern Stansbury Basin, South Australia.


2007 ◽  
Vol 86 (3) ◽  
pp. 179-196 ◽  
Author(s):  
J. Wallinga ◽  
F. Davids ◽  
J.W.A. Dijkmans

AbstractOver the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we review: 1) the development of the methodology; 2) tests of the reliability of luminescence dating on Netherlands’ sediments; and 3) geological applications of the method in the Netherlands. Our review shows that optically stimulated luminescence dating of quartz grains using the single aliquot regenerative dose method yields results in agreement with independent age control for deposits ranging in age from a few years up to 125 ka. Optical dating of quartz has successfully been applied to sediments from a wide range of depositional environments such as coastal dunes, cover sands, fluvial channel deposits, colluvial deposits and fimic soils. These results demonstrate that optical dating is a powerful tool to explore the natural archive of the Netherlands’ subsurface.


2020 ◽  
Author(s):  
Marcio Boechat Albernaz ◽  
Lonneke Roelofs ◽  
Harm Jan Pierik ◽  
Maarten Kleinhans

<p>Densely populated low-lying areas are under pressure of relative sea level rise and human impacts. Low-lying areas like most of The Netherlands were built with fluvial-marine sediment supply interacting with peat and vegetation. The morphology and sedimentological architecture of such areas is controlled by initial conditions (e.g. accommodation space), boundary conditions (fluvial-tidal discharges) and internal biogeomorphodynamic feedbacks. The relative importance of these controls varies per system and we need generic rules to better understand the past and future delta and alluvial plain evolution. Here we setup novel long-term idealized morphodynamic models including stratigraphy and vegetation to unravel the effect of initial and boundary conditions in building landscape and creating complex depositional environments. Larger accommodation space creates and preserves a bayhead delta while limited space resulted in ebb-delta growth. Fluvial-tidal discharge fluctuations promote larger levees and more crevasses, contributing to floodplain accretion. The presence of sparse vegetation (i.e. trees) also contributed to floodplain infilling and created wide levees and more crevasses. On the other hand, dense vegetated floodplain inhibits levee widening and the formation of crevasses leaving the floodplain rather starved. Our results agree with the dimensions and evolution from geological reconstructions of the Rhine Delta in The Netherlands. In general, discharge fluctuations by rivers and tides, sediment delivery and (sparse) vegetation are crucial to create more land. These findings are important for the reconstruction of past environments and sediment budget estimative as well to future management of low-lying areas where raising the land-level is a challenge.</p>


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Sign in / Sign up

Export Citation Format

Share Document