Potential impacts of the mean sea level rise on the hydrodynamics of the Douro river estuary

2013 ◽  
Vol 165 ◽  
pp. 1951-1956 ◽  
Author(s):  
Renato Mendes ◽  
Nuno Vaz ◽  
João M. Dias
2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2021 ◽  
Vol 33 (6) ◽  
pp. 298-307
Author(s):  
A Jeong Kim ◽  
Myeong Hee Lee ◽  
Seung Won Suh

Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect south-east (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.


GEOMATIKA ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 1
Author(s):  
Isna Uswatun Khasanah

<p><em>The phenomenon of the sea level rise caused by many factors, one of which is global warming. Coastal areas are most vulnerable regions affected by sea level rise. Therefore, the information of sea level rise are used as consideration and policy-making on development plans for coastal areas like in West Sumatera Waters. The aims of this research are to identify the quality of Satelit Altimetry Jason-2 Data in West Sumatera Waters and to analysis the information of sea level rise of West Sumatera sea based on satelit altimetry Jason-2 data. Sea Level Rise in West Sumatera Water are identified by several steps, begin with collecting satellite altimetry Jason-2 data from 2008 to 2015 years. Then extraction Sea Surface Height (SSH) value of  binary GDR data from Jason-2 by post processing to eliminate the geophysic errors, furthermore extraction undulation geoid value and calculating the Sea Level Anomaly (SLA) value. To identify the sea level rise value used linear regression analysis on the SLA data.  The results of this research shown the existence of satellite altimetry Jason-2 data is 92.91%. The mean sea level rise in West Sumatera Waters during th period 8 year is 6.88 mm, and mean sea level rise of West Sumatera sea is 0.86 mm/year.</em></p>


2021 ◽  
Vol 9 (2) ◽  
pp. 205
Author(s):  
Serafino Afonso Rui Mucova ◽  
Ulisses Miranda Azeiteiro ◽  
Walter Leal Filho ◽  
Carina Lurdes Lopes ◽  
João Miguel Dias ◽  
...  

Mean sea-level is expected to rise significantly by 2100 in all scenarios, including those compatible with the objectives of the Paris Climate Agreement. Global sea level rise projections indicate devastating implications for populations, ecosystem services and biodiversity. The implications of the sea-level rise (SLR) on low-lying islands and coastal regions and communities are substantial and require deep-rooted coping measures. In the absence of adequate responses for coping, Mozambique is expected to record huge losses, with an impact on the economy and development in many sectors of its coastal regions mainly in northern Mozambique. This research aimed to perform projections on SLR in Mozambique, and to understand its role and implications on the north coast of the country. SLR was estimated through the analysis of model outputs that support the global estimates of the fifth IPCC report near the Mozambican coast, for each of the four representative concentration pathways (RCPs) scenarios. Regional coastline retreat and coastal erosion were estimated through the results of global sandy coastlines projections developed by Vousdoukas. Mean sea-level rise projections indicate that regional estimates for the Mozambican coast are relative higher than global estimates (~0.05 m) for all representative concentration pathways (RCPs). Yet, we highlight significant differences in sea-level rises of 0.5 m, 0.7 m or 1.0 m by 2100 compared to the global mean. It is expected that with the increase in the mean sea level in the northern part of the Mozambican coast, erosive effects will increase, as well as the retreat of the coastline until 2100. With this, the tourism sector, settlements, ecosystem services and local populations are expected to be significantly affected by 2050, with increased threats in 2100 (RCP4.5, RCP8.5). Local responses for coping are proposed and properly discussed for the RCP4.5 and RCP8.5 scenarios through 2100.


2021 ◽  
Author(s):  
Amin Shoari Nejad ◽  
Andrew C. Parnell ◽  
Alice Greene ◽  
Peter Thorne ◽  
Brian P. Kelleher ◽  
...  

Abstract. We provide an updated sea level dataset for Dublin for the period 1938 to 2016 at yearly resolution. Using a newly collated sea level record for Dublin Port, as well as two nearby tide gauges at Arklow and Howth Harbour, we perform data quality checks and calibration of the Dublin Port record by adjusting the biased high water level measurements that affect the overall calculation of mean sea level (MSL). To correct these MSL values, we use a novel Bayesian linear regression that includes the Mean Low Water values as a predictor in the model. We validate the re-created MSL dataset and show its consistency with other nearby tide gauge datasets. Using our new corrected dataset, we estimate a rate of 1.08 mm/yr sea level rise at Dublin Port between 1953–2016 (95 % CI from 0.62 to 1.55 mm/yr), and a rate of 6.48 mm/yr between 1997–2016 (95 % CI 4.22 to 8.80 mm/yr). Overall sea level rise is in line with expected trends but large multidecadal varaibility has led to higher rates of rise in recent years.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Sign in / Sign up

Export Citation Format

Share Document