Attribution of Marine Crop Production in the United States of America Based on Artificial Neural Network Learning

2019 ◽  
Vol 98 (sp1) ◽  
pp. 277
Author(s):  
Chi Liu
2020 ◽  
Vol 12 (18) ◽  
pp. 7433
Author(s):  
Danny Chi Kuen Ho ◽  
Eve Man Hin Chan ◽  
Tsz Leung Yip ◽  
Chi-Wing Tsang

In 2013, China announced the Belt and Road Initiative (BRI), which aims to promote the connectivity of Asia, Europe, and Africa and deepen mutually beneficial economic cooperation among member countries. Past studies have reported a positive impact of the BRI on trade between China and its partner countries along the Belt and Road (B&R). However, less is known about its effect on the sectoral trade between the B&R countries and countries that show little support of the BRI. To address that gap, this study examines the changing patterns of clothing imports by the United States (US) from China and 14 B&R countries in Asia. An extended gravity model with a policy variable BRI is built to explain bilateral clothing trade flow. A panel regression model and artificial neural network (ANN) are developed based on the data collected from 1998 to 2018 and applied to predict the trade pattern of 2019. The results show a positive effect of the BRI on the clothing exports of some Asian developing countries along the B&R to the US and demonstrate the superior predictive power of the ANN. More research is needed to examine the balance between economic growth and the social and environmental sustainability of developing countries and to apply more advanced machine learning algorithms to examine global trade flow under the BRI.


2015 ◽  
Vol 5 (4) ◽  
pp. 480-493 ◽  
Author(s):  
Ahmed F. Mashaly ◽  
A. A. Alazba

Three artificial neural network learning algorithms were utilized to forecast the productivity (MD) of a solar still operating in a hyper-arid environment. The learning algorithms were the Levenberg–Marquardt (LM), the conjugate gradient backpropagation with Fletcher–Reeves restarts, and the resilient backpropagation. The Julian day, ambient air temperature, relative humidity, wind speed, solar radiation, temperature of feed water, temperature of brine water, total dissolved solids (TDS) of feed water, and TDS of brine water were used in the input layer of the developed neural network model. The MD was located in the output layer. The developed model for each algorithm was trained, tested, and validated with experimental data obtained from field experimental work. Findings revealed the developed model could be utilized to predict the MD with excellent accuracy. The LM algorithm (with a minimum root mean squared error and a maximum overall index of model performance) was found to be the best in the training, testing, and validation stages. Relative errors in the predicted MD values of the developed model using the LM algorithm were mostly in the vicinity of ±10%. These results indicated that the LM algorithm is the most ideal and accurate algorithm for the prediction of the MD with the developed model.


Sign in / Sign up

Export Citation Format

Share Document