computational intelligent
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
pp. 127-136
Author(s):  
Ben Khayut ◽  
Lina Fabri ◽  
Maya Avikhana

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 618
Author(s):  
Muhammad Umar ◽  
Zulqurnain Sabir ◽  
Muhammad Asif Zahoor Raja ◽  
Manoj Gupta ◽  
Dac-Nhuong Le ◽  
...  

The current study aims to design an integrated numerical computing-based scheme by applying the Levenberg–Marquardt backpropagation (LMB) neural network to solve the nonlinear susceptible (S), infected (I) and recovered (R) (SIR) system of differential equations, representing the spreading of infection along with its treatment. The solutions of both the categories of spreading infection and its treatment are presented by taking six different cases of SIR models using the designed LMB neural network. A reference dataset of the designed LMB neural network is established with the Adam numerical scheme for each case of the spreading infection and its treatment. The approximate outcomes of the SIR system based on the spreading infection and its treatment are presented in the training, authentication and testing procedures to adapt the neural network by reducing the mean square error (MSE) function using the LMB. Studies based on the proportional performance and inquiries based on correlation, error histograms, regression and MSE results establish the efficiency, correctness and effectiveness of the proposed LMB neural network scheme.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


2021 ◽  
Vol 11 (1) ◽  
pp. 40-47
Author(s):  
Kaixiang Zhu ◽  
◽  
Lily D Li ◽  
Michael Li

Timetabling problems have been widely studied, of which Educational Timetabling Problem (ETP) is the biggest section. Generally, ETP can be divided into three modules, namely, course timetabling, school timetabling, and examination timetabling. For solving ETP, many techniques have been developed including conventional algorithms and computational intelligence approaches. Several surveys have been conducted focusing on those methods. Some surveys target on particular categories; some tend to cover all types of approaches. However, there are lack of reviews specifically focusing on computational intelligence in ETP. Therefore, this paper aims at providing a reference of selecting a method for the applications of ETP by reviewing popular computational intelligent algorithms, such as meta-heuristics, hyper-heuristics, hybrid methods, fuzzy logic, and multi-agent systems. The application would be categorised and described into the three types of ETP respectively.


Sign in / Sign up

Export Citation Format

Share Document