scholarly journals Performance Improvement of Heat Supply Systems Through the Implementation of Wind Power Plants

Author(s):  
A. V. Bezhan

The current growth of energy consumption, which is directly related to the use of a large number of fossil fuels, and, as a result, causes environmental pollution, requires the search for ways to conserve energy and use traditional energy resources economically, as well as to preserve environmental well-being. In such a situation, a good solution to this problem can be the use of energy production technologies based on the use of non-traditional and renewable energy sources, and, in particular, the use of wind energy. In heat supply systems, wind energy can be involved in heat production technologies and then used for heating cities and towns. The method of heat supply of buildings through the use of a combined system of energy sources, consisting of a boiler house and wind power plants, is considered. The methodical basis of a very specific heat supplying system has been developed. The specificity of this system is that the boiler comes into operation, complementing the wind turbine operation, only if the wind is weak or absent at all. In other cases, the heat supply is provided by wind turbines, and the boiler house is waiting for the heating load. An assessment of the possible use of wind power facilities together with a boiler house in providing a heating load schedule for consumers located in an area with an increased potential of the wind which average annual speed is at the level of ~7 m/s is presented. The duration of the heating season in this area is 9–10 months a year. It is shown that the joint use of the boiler house and wind power plants for heat supply purposes during the year can reduce the share of the boiler house in the heat supply of consumers by 50–70 % or more.

2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


2018 ◽  
Vol 7 (3.5) ◽  
pp. 48
Author(s):  
Valeri Telegin ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.  


2018 ◽  
Vol 65 (9) ◽  
pp. 668-676 ◽  
Author(s):  
B. A. Semenov ◽  
E. A. Larin

Author(s):  
Gatis Bazbauers ◽  
Ginta Cimdina

The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply The aim of the study is to determine whether and to what extent it is possible to use excess electricity produced by wind power plants during low demand periods for district heat production by heat pumps. Energy system analysis on an hourly basis is conducted at various capacities of wind power plants. The results show that it is possible to increase the share of renewable energy sources, decrease the use of primary energy sources and CO2 emissions per unit of the produced energy, i.e. heat and electricity, by using the surplus electricity produced by wind power in the heat pumps combined with the heat storage.


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


2021 ◽  
Vol 265 ◽  
pp. 04011
Author(s):  
Liudmila Nefedova ◽  
Kirill Degtyarev ◽  
Sophia Kiseleva ◽  
Mikhail Berezkin

The article discusses the possibilities of hydrogen production using renewable energy sources in Russia for energy storage and for export. The global trends in the development of green hydrogen energy reducing the CO2 emission are highlighted. The analysis of the potential for hydrogen production in regions of Russia using electricity from operating wind power plants (WPPs), as well as wind power projects planned for construction until 2024 has been carried out.


Sign in / Sign up

Export Citation Format

Share Document