scholarly journals High Power SESAM Mode-Locked Laser Based on Yb3+:YAlO3 Bulk Crystal

2020 ◽  
Vol 11 (3) ◽  
pp. 179-186
Author(s):  
A. Rudenkov ◽  
V. Kisel ◽  
A. Yasukevich ◽  
K. Hovhannesyan ◽  
A. Petrosyan ◽  
...  

Yttrium aluminium perovskite YAlO3 (YAP) crystal, doped with rare-earth ions, has been extensively studied as a diode-pumped laser host material. The wide interest to rare-earth ions doped YAP crystals is explained by its good thermal and mechanical properties, high natural birefringence, widely used Czochralski  growth method. The aim of this work was to study the Yb3+:YAlO3  crystal as an active medium for high  power mode-locked laser.Yb3+-doped perovskite-like aluminate crystals have unique spectroscopic and thermooptical properties that allowed using these crystals as an active medium of high power continuous wave (CW) and modelocked (ML) bulk lasers with diode pumping.growth method. The aim of this work was to study the Yb3+:YAlO3  crystal as an active medium for high  power mode-locked laser.In our work spectroscopic properties of Yb:YAP crystal and laser characteristics in CW and ML regimes are investigated. Maximum output power of 4 W with optical-to-optical efficiency of 16.3 % and 140 fs pulse duration have been obtained for Yb:YAP E //c-polarization with 10 % output coupler transmittance. Tunability range as wide as 67 nm confirms high promise of using Yb:YAP crystal for lasers working in wide spectral range. 

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


Author(s):  
Jiaxin Song ◽  
Hanshuo Wu ◽  
Jun Ye ◽  
Hanwei Zhang ◽  
Jiangming Xu ◽  
...  

In this paper, we experimentally investigated the extreme frequency shift in high-power Raman fiber laser (RFL). The RFL was developed by using a pair of fiber Bragg gratings with fixed and matched central wavelength (1120 nm) combined with a piece of 31-m-long polarization maintaining (PM) passive fiber adopted as Raman gain medium. The pump source was a homemade high-power, linearly polarized (LP) wavelength-tunable master oscillator power amplifier (MOPA) source with ${\sim}25~\text{nm}$ tunable working range (1055–1080 nm). High-power and high-efficiency RFL with extreme frequency shift between the pump and Stokes light was explored. It is found that frequency shift located within 10.6 THz and 15.2 THz can ensure efficient Raman lasing, where the conversion efficiency is more than 95% of the maximal value, 71.3%. In addition, a maximum output power of 147.1 W was obtained with an optical efficiency of 71.3%, which is the highest power ever reported in LP RFLs to the best of our knowledge.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 861
Author(s):  
Lina Zhao ◽  
Luyang Tong ◽  
Fangxin Cai ◽  
Ye Yuan ◽  
Yangjian Cai

We present a high-power, wavelength-tunable picosecond Yb3+: CaGdAlO4 (Yb:CALGO) laser based on MgO-doped lithium niobate (MgO:LN) nonlinear mirror mode locking. The output wavelength in the continuous wave (CW) regime is tunable over a 45 nm broad range. Mode locking with a MgO:LN nonlinear mirror, the picosecond laser is tunable over 23 nm from 1039 to 1062 nm. The maximum output power of the mode-locked laser reaches 1.46 W, and the slope efficiency is 18.6%. The output pulse duration at 1049 nm is 8 ps. The laser repetition rate and bandwidth are 115.5 MHz and 1.7 nm, respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yun Ye ◽  
Xianfeng Lin ◽  
Xiaoming Xi ◽  
Chen Shi ◽  
Baolai Yang ◽  
...  

Abstract Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.


2020 ◽  
Vol 8 ◽  
Author(s):  
Wei Wang ◽  
Di Sun ◽  
Xiao Du ◽  
Jie Guo ◽  
Xiaoyan Liang

A simple, compact, double-pass pumped Nd:YVO4 thin disk laser is demonstrated. Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally. The maximum output power of 17.7 W is achieved by employing a 0.5 at.% doped sample, corresponding to an optical-to-optical efficiency of 46% with respect to the absorbed pump power. In addition, a numerical analysis and an experimental study of the temperature distribution, and thermal lens effect of the Nd:YVO4 thin disk, are presented considering the influence of the energy transfer upconversion effect and the temperature dependence of the thermal conductivity tensor. The simulated results are in good agreement with the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Zhipeng Qin ◽  
Guoqiang Xie ◽  
Jian Zhang ◽  
Jingui Ma ◽  
Peng Yuan ◽  
...  

We report on a continuous-wave (CW) and passively Q-switched Er:Y2O3 ceramic laser in mid-infrared spectral region. In the CW regime, a maximum output power of 2.07 W is achieved at 2717.3 nm with a slope efficiency of 13.5%. Stable passive Q-switching of the Er:Y2O3 ceramic laser is demonstrated based on semiconductor saturable absorber mirror. Under an absorbed pump power of 12.4 W, a maximum average output power of 223 mW is generated with a pulse energy of 1.7 μJ and a pulse width of 350 ns at 2709.3 nm.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Shen ◽  
Chuanpeng Qian ◽  
Xiaoming Duan ◽  
Ruijun Lan

We demonstrated a high-power long-wave infrared laser based on a polarization beam coupling technique. An average output power at $8.3~\unicode[STIX]{x03BC}\text{m}$ of 7.0 W was achieved at a maximum available pump power of 107.6 W, corresponding to an optical-to-optical conversion of 6.5%. The coupling efficiency of the polarization coupling system was calculated to be approximately 97.2%. With idler single resonance operation, a good beam quality factor of ${\sim}1.8$ combined with an output wavelength of $8.3~\unicode[STIX]{x03BC}\text{m}$ was obtained at the maximum output power.


2016 ◽  
Vol 28 (13) ◽  
pp. 1481-1484 ◽  
Author(s):  
Feng Gao ◽  
Shuai Luo ◽  
Hai-Ming Ji ◽  
Song-Tao Liu ◽  
Feng Xu ◽  
...  

Author(s):  
Chao Wang ◽  
Wenxue Li ◽  
Xianghui Yang ◽  
Dongbi Bai ◽  
Kangwen Yang ◽  
...  

Abstract A composite transparent YAG/Yb:YAG/YAG ceramic was prepared by a non-aqueous tape-casting method. An optical transmittance of 82% was obtained at visible wavelength and around 1100 nm. A low-threshold, broadband tunable continuous-wave (CW) laser at 1031 nm was further demonstrated from the ceramic sample, which was pumped by a 974 nm fiber-pigtailed laser diode. The threshold pump power was 0.45 W and the maximum output power was 3.2 W, corresponding to a slope efficiency of 20.4%. By inserting an SF57 prism in the laser cavity, the output wavelength could be tuned continuously from 1021 to 1058 nm.


2020 ◽  
Author(s):  
Ke Wang ◽  
Mingyao Gao ◽  
Shuhui Yu ◽  
Jian Ning ◽  
Zhenda Xie ◽  
...  

Abstract We demonstrate a compact, high-efficiency and widely tunable intracavity singly resonant optical parametric oscillator (IC-OPO) based on multichannel periodically-poled lithium niobate (PPLN). The IC-OPO is composed of 808 nm pump laser diode (LD), Nd:YVO4 laser and linear OPO. The continuous-wave (CW) mid-infrared (MIR) output laser is tunable from 2.25 μm to 4.79 μm. The maximum output power exceeds 1.08 W at 3.189 μm at 9.1 W LD pump power and the conversion efficiency is 11.88 %. We also build up a prototype with volume of Wmm3 and its total weight is less than 2 Kg. The measured power stability is 1.3 % Root Meat Square (RMS) for a 3 h duration under simulated high temperature conditions of 40 ℃. RMS is 2.6 % for a 4 h duration when simulated temperature is - 40 ℃.


Sign in / Sign up

Export Citation Format

Share Document