Jurassic epithermal deposits in the Toodoggone River area, northern British Columbia; examples of well-preserved, volcanic-hosted, precious metal mineralization

1991 ◽  
Vol 86 (3) ◽  
pp. 529-554 ◽  
Author(s):  
Larry James Diakow ◽  
Andrejs Panteleyev ◽  
Tom G. Schroeter
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 331 ◽  
Author(s):  
Tadsuda Taksavasu ◽  
Thomas Monecke ◽  
T. Reynolds

Silica sinters forming at the Wairakei geothermal power plant in New Zealand are composed of noncrystalline opal-A that deposited rapidly from cooling geothermal liquids flashed to atmosphere. The sinter is laminated with alternating layers of variably compacted silicified filamentous microbes encased by chains of fused silica microspheres. Microscopic inspection of bonanza quartz vein samples from the Buckskin National low-sulfidation epithermal precious metal deposit in Nevada showed that colloform bands in these veins exhibit relic microsphere textures similar to those observed in the silica sinters from the Wairakei power plant. The textural similarity suggests that the colloform bands were originally composed of noncrystalline opal-A that subsequently recrystallized to quartz. The colloform bands contain dendrites of electrum and naumannite that must have grown in a yielding matrix of silica microspheres deposited at the same time as the ore minerals, implying that the noncrystalline silica exhibited a gel-like behavior. Quartz bands having other textural characteristics in the crustiform veins lack ore minerals. This suggests that ore deposition and the formation of the colloform bands originally composed of compacted microspheres of noncrystalline silica are genetically linked and that ore deposition within the bonanza veins was only episodic. Supersaturation of silica and precious metals leading to the formation of the colloform bands may have occurred in response to transient flashing of the hydrothermal liquids. Flashing of geothermal liquids may thus represent a key mechanism in the formation of bonanza precious metal grades in low-sulfidation epithermal deposits.


2020 ◽  
Author(s):  
Lauren R. Zeeck ◽  
Thomas Monecke ◽  
T. James Reynolds ◽  
Erik R. Tharalson ◽  
Katharina Pfaff ◽  
...  

Abstract The Miocene low-sulfidation epithermal deposits of the Omu camp in northeastern Hokkaido, Japan, are small past-producers of precious metals and represent significant exploration targets for high-grade Au and Ag ores. The quartz textures of ore samples and the distribution of ore minerals within quartz veins were studied to identify the processes that resulted in the bonanza-grade precious metal enrichment in these deposits. In the high-grade vein samples, which are crustiform or brecciated in hand specimen, ore minerals exclusively occur within colloform quartz bands. High-magnification microscopy reveals that ore-bearing colloform bands consist of fine-grained quartz exhibiting relic microsphere textures and quartz having a mosaic texture that formed through recrystallization of the microspheres. The presence of relic microspheres is evidence that the microcrystalline quartz hosting the ore minerals formed through recrystallization of a noncrystalline silica precursor phase. The ore-hosting colloform bands composed of agglomerated microspheres alternate with barren colloform quartz bands that are composed of fibrous chalcedonic quartz and mosaic quartz formed through recrystallization of the chalcedony. The findings of this study are consistent with previous models linking bonanza-grade precious metal enrichment and the formation of bands of noncrystalline silica in low-sulfidation epithermal veins to episodic vigorous boiling or flashing of the hydrothermal system in the near-surface environment.


2013 ◽  
Vol 43 ◽  
pp. 86-100 ◽  
Author(s):  
Mabel Elena Lanfranchini ◽  
Ricardo Oscar Etcheverry ◽  
Raúl Ernesto de Barrio ◽  
Clemente Recio Hernández

2018 ◽  
Vol 82 (S1) ◽  
pp. S61-S87 ◽  
Author(s):  
M. C. Gallard-Esquivel ◽  
A. Cepedal ◽  
M. Fuertes-Fuente ◽  
A. Martin-Izard

ABSTRACTEpithermal Au-Ag deposits of the La Carolina district, in the San Luis metallogenetic belt (Argentina), are related spatially and genetically to Mio-Pliocene volcanism. In this district, mineralization in the Cerro Mogote and Puesto La Estancia prospects occur as disseminations, veins and fracture/cavity infillings in volcanic/pyroclastic rocks, metamorphic basement and hydrothermal breccias. The gangue assemblage is dominated by carbonates (siderite, rhodochrosite, kutnahorite, dolomite). The main sulfides are pyrite, sphalerite, galena and chalcopyrite. Pyrite and sphalerite have compositional zoning, the former with As-rich cores and Cu-rich overgrowths, the latter with Fe-rich and Fe-poor bands. Sphalerite shows variable contents of Mn, Cu, In, Ga, Ge and Ag. The In-richest sphalerite hosts up to 5940 ppm In but also contains elevated concentrations of Cu, Ag, Ga and Ge, suggesting a coupled substitution mechanism resulting in enrichments in monovalent (Ag+, Cu+) and trivalent-tetravalent cations (Ga3+, In3+, Ge4+). The main precious metal minerals are Ag-rich tetrahedrite, acanthite, argyrodite, pearceite–polybasite and Au-Ag alloy. Locally, Se and/or Te-enriched minerals include galena Pb(S0.9–1Se0.1–0), hessite Ag2(Te0.9–1Se0.1–0), Se-rich cervelleite Ag4(Te1.3–0.9S1–0.5Se0.5–0.2), and also alburnite [Ag8GeTe2S4] and benleonardite [Ag15Cu(As,Sb)2S7Te4]. Pearceite contains Te (3.6–4.3 wt.%) and Se (1–2.3 wt.%) substituting for S, which are unusually high concentrations for this mineral. The Puesto La Estancia deposit contains various tellurides including sylvanite, petzite, stutzite, altaite, tellurobismuthite and volynskite. This study shows that the chemistry of the fluids fluctuated during ore deposition suggesting different fluid pulses (system rejuvenation and/or boiling). The enrichment in Te, Se and Bi enrichment is supportive of a magmatic contribution to the ore fluid, while graphite in the metamorphic basement could be the source of germanium, although a magmatic source cannot be ruled out.


2011 ◽  
Author(s):  
Jonathan Fan ◽  
Chris McLeod ◽  
Mieke Koehoorn

Sign in / Sign up

Export Citation Format

Share Document