Paleozoogeography of Late Cretaceous planktonic foraminifera in North America

1972 ◽  
Vol 2 (1) ◽  
pp. 14-34 ◽  
Author(s):  
R. G. Douglas
2019 ◽  
Vol 59 (6) ◽  
pp. 1074-1085
Author(s):  
E. A. Sokolova

The article analyzes own data on the species composition of shells of planktonic foraminifera from the Upper Cretaceous sediments of the Indian Oceans, as well as from the sections of the offshore seas of Australia. The species of planktonic foraminifera are grouped and arranged in a climatic series. An analysis of the change in the systematic composition of foraminifers made it possible to distinguish periods of extreme and intermediate climatic states in the Late Cretaceous.


2018 ◽  
Author(s):  
S. Augusta Maccracken ◽  
◽  
Ian M. Miller ◽  
Conrad C. Labandeira

2014 ◽  
Vol 51 (7) ◽  
pp. 677-681 ◽  
Author(s):  
Matthew J. Vavrek ◽  
Alison M. Murray ◽  
Phil R. Bell

A recent survey of the middle Cenomanian Dunvegan Formation along the Peace River, Alberta, has yielded a partial skull of a large acipenseriform fish. The fossil was from an animal approximately 5 m in length, based on comparisons with living relatives. Though incomplete, this represents an important record of mid-Cretaceous fish from northern North America, as formations of this age are virtually unexplored in northern regions. This fossil is the oldest acipenserid from North America, and one of the most northerly known.


1998 ◽  
Vol 67 (4) ◽  
pp. 237-255 ◽  
Author(s):  
G.A. Bishop ◽  
R.M. Feldmann ◽  
F. Vega

The podotrematous crab family Dakoticancridae includes four genera: Dakoticancer Rathbun, Tetracarcinus Weller, Avitelmessus Rathbun, and Seorsus Bishop, all known solely from the Late Cretaceous of North America. Lathelicocarcinus Bishop, originally referred to the family, must be reassigned. Fine details of anatomy, preserved on specimens of D. overanus Rathbun and A. grapsoideus Rathbun, permit description of genital openings and interpretation of functional morphology of appendages. Although one species, D. australis Rathbun, has been found associated with burrow structures, all were probably vagrant epifaunal animals on fine- to medium-grained siliciclastic substrata. Food was probably obtained by generalized low-level predation and scavenging. Results of a cladistic analysis are consistent with the stratigraphic data suggesting that T. subquadrata Weller is nearest the rootstock of the family and that other taxa within the family are derived from it.


1992 ◽  
Vol 6 ◽  
pp. 132-132
Author(s):  
Thomas R. Holtz

It has often been assumed that the intensively studied dinosaur faunal assemblages of western North America and the Gobi Desert of Mongolia and China represent “typical” Late Cretaceous terrestrial vertebrate communities. This assumption has led to a paleoecological scenario in which a global ecological shift occurs from the dominance of high-browsing saurischian (i.e., sauropod) to low-browsing ornithischian (i.e., iguanodontian, marginocephalian, ankylosaurian) herbivore communities. Furthermore, the assumption that the Asiamerican dinosaur faunas are communities “typical” of the Late Cretaceous has forced the conclusion that the sauropod-dominated Argentine population must have been an isolated relict ecosystem of primitive taxa (i.e., titanosaurid sauropods, abelisaurid ceratosaurs). Recent discoveries and reinterpretations of other Late Cretaceous assemblages, however, seriously challenge these assumptions.Paleogeography and paleobiogeography have demonstrated that terrestrial landmasses became progressively fractionated from the Late Jurassic (Kimmeridgian-Tithonian) to the Late Cretaceous (Campanian), owing to continental drift and the development of large epicontinental seas (the Western Interior Seaway, the Turgai Sea, etc.). The Maastrichtian regressions resulted in the reestablishment of land connection between long isolated regions (for example, western and eastern North America). These geographic changes are reflected in changes in the dinosaurian faunas. These assemblages were rather cosmopolitan in the Late Jurassic (Morrison, Tendaguru, and Upper Shaximiao Formations) but became more provincialized throughout the Cretaceous.Cluster analysis of presence/absence data for the theropod, sauropod, and ornithischian clades indicates that previous assumptions for Late Cretaceous dinosaurian paleoecology are largely in error. These analyses instead suggest that sauropod lineages remained a major faunal component in both Laurasia (Europe, Asia) and Gondwana (South America, Africa, India, and Australia). Only the pre-Maastrichtian Senonian deposits of North America were lacking sauropodomorphs. Furthermore, the abelisaurid/titanosaurid fauna of Argentina is, in fact, probably more typical of Late Cretaceous dinosaurian communities. Rather, it is the coelurosaurian/ornithischian communities of Asiamerica (and particularly North America) that are composed primarily of dinosaurs of small geographic distribution. Thus, the Judithian, Edmontonian, and Lancian faunas, rather than being typical of the Late Cretaceous, most likely represent an isolated island-continent terrestrial vertebrate population, perhaps analogous to the extremely isolated vertebrate communities of Tertiary South America. Furthermore, the shift from high-browsing to low-browsing herbivore “dynasties” more likely represents a local event in Senonian North America and does not represent a global paleoecological transformation of Late Cretaceous dinosaur community structure.


2020 ◽  
Vol 50 (3) ◽  
pp. 313-317
Author(s):  
Martin A. Buzas ◽  
Lee-Ann C. Hayek ◽  
Brian T. Huber

ABSTRACT The ecological balance of nature is defined as an equilibrium between species richness (S) and species evenness (E) such that diversity (H) remains constant with time. Based on this definition, our approach identifies growth or decline in communities as perturbations from stasis and has successfully done so for benthic foraminiferal communities. Here, we examine whether this approach is appropriate for planktonic foraminifera. To do so, we utilized planktonic foraminiferal counts (39 samples, 66% recovery) from Maastrichtian sediments in the Weddell Sea from ODP Hole 690C. A total of 24 species were observed and both >63-µm and >150-µm fractions were counted. In the >63-µm fraction, nine communities were recognized while in the >150-µm fraction, there were 12. In both fractions at 70.45 Ma, a boundary was recognized and immediately after this boundary, a community in growth was identified. A trend of increasing diversity upcore was substantiated by regression on individual samples. For our purposes, the >150-µm fraction in this data set is sufficient to recognize community trends. The >150-µm fraction in Hole 690C has 82% of the sampling time in stasis and an average time per community is 0.85 Ma. The >63-µm fraction has 73% of the sampling time in stasis and an average time per community of 1.02 Ma.


Sign in / Sign up

Export Citation Format

Share Document