scholarly journals Fold–thrust structures – where have all the buckles gone?

2019 ◽  
Vol 487 (1) ◽  
pp. 21-44 ◽  
Author(s):  
Robert W. H. Butler ◽  
Clare E. Bond ◽  
Mark A. Cooper ◽  
Hannah Watkins

AbstractThe margins to evolving orogenic belts experience near layer-parallel contraction that can evolve into fold–thrust belts. Developing cross-section-scale understanding of these systems necessitates structural interpretation. However, over the past several decades a false distinction has arisen between some forms of so-called fault-related folding and buckle folding. We investigate the origins of this confusion and seek to develop unified approaches for interpreting fold–thrust belts that incorporate deformation arising both from the amplification of buckling instabilities and from localized shear failures (thrust faults). Discussions are illustrated using short case studies from the Bolivian Subandean chain (Incahuasi anticline), the Canadian Cordillera (Livingstone anticlinorium) and Subalpine chains of France and Switzerland. Only fault–bend folding is purely fault-related and other forms, such as fault-propagation and detachment folds, all involve components of buckling. Better integration of understanding of buckling processes, the geometries and structural evolutions that they generate may help to understand how deformation is distributed within fold–thrust belts. It may also reduce the current biases engendered by adopting a narrow range of idealized geometries when constructing cross-sections and evaluating structural evolution in these systems.

2016 ◽  
Vol 187 (2) ◽  
pp. 83-104 ◽  
Author(s):  
Josselin Berthelon ◽  
William Sassi

Abstract Using the geologist’s interpretation of 6 published balanced cross-sections in the fold and thrust belts of the northwestern Mediterranean, a comparative analysis of the interpreted subsurface structural architecture is used to address the links between the structural style and the mechanics of fold and thrust emplacement. For each cross-section example, the geo-dataset and the methods used by the interpreters are different in quantity and quality. Here we have examined how useful is the content of information of each cross-section to constrain the structural evolution scenario. Each interpretation is examined according to considerations of the mechanics of sedimentary basin deformation and how uncertain is the extrapolation of fault trajectory at depth. It is shown that each case reveals a particular type of structural style: thin-skin or thick skin tectonics, fault-related folding, pre-existing fault pattern. The present structural analysis is used to determine for each cross-section the nature of the mechanical problem to address that will reduce uncertainty on the geologic scenario reconstruction. The proposed mechanical boundary conditions could serve to develop analog or numerical models that aim at testing the mechanical validity of the structural scenario of fold and thrust emplacement.


1985 ◽  
Vol 122 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Robert W. H. Butler

AbstractThe structure of fold and thrust belts has been studied for just over one hundred years and has been the subject of a recent international conference at Toulouse, in May 1984. This article reviews some of the recent advances in thrust tectonics from a personal viewpoint, in the light of the Toulouse meeting. Key tools in correctly interpreting thrust systems are the use of balanced (restorable) cross-sections and the resolution of three dimensional fault systems. These analytical methods are now being widely developed and applied to numerous orogenic belts with many surprising results. While our understanding of foreland thrust belts is now probably better than any other structural environment, there is still great uncertainty as to the emplacement-driving mechanisms of these belts. Future work will try to solve these and other outstanding problems and apply the new analytical methods to the interior parts of thrust belts in efforts to restore entire orogens.


2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


2020 ◽  
Author(s):  
Anastasia Kushnareva ◽  
Artem Moskalenko ◽  
Alexander Pasenko

<p>The Talas Range forms the northwest part of the Caledonides of the Northern Tian Shan. Based on differences in the structural style, metamorphism and sedimentary successions, three thrust sheets have been identified – the Uzunakhmat, Talas, and Kumyshtag thrust sheets. The Talas and Kumyshtag thrust sheets consist of Neoproterozoic-Ordovician terrigenous and carbonate rock units, whereas the Uzunakhmat thrust sheet consists of Neoproterozoic terrigenous rocks metamorphosed up to greenschist facies. The Uzunakhmat thrust sheet is separated from the Talas and Kumyshtag thrust sheets by the southwest-dipping Central Talas thrust (CTT). The dextral strike-slip Talas-Fergana Fault bounds the Uzunakhmat thrust sheet in the southwest. The main deformation events occurred in the Middle-Late Ordovician.</p><p>Structural and strain studies were done along profiles normal to the strike of folds and faults and located in the northwest and southeast parts of the Uzunakhmat thrust sheet. We also incorporate in our study structural profile in the central part of the Uzunakhmat thrust sheet, documented by Khudoley (1993) and Voytenko & Khudoley (2012).</p><p>The main strain indicators were detrital quartz grains in sandstones. Rf/φ and Normalized Fry methods were used to identify the amount of strain. Oblate ellipsoids predominate with Rxz values varying mostly from 1,6 to 2,4. Long axes of strain ellipsoids are sub-horizontal with the southeast to east-southeast trend. Similar trends have long axes of the anisotropy magnetic susceptibility ellipsoid being parallel to fold axes, cleavage-bedding intersection and mineral lineation as well as the trend of the major thrusts, including CTT.</p><p>The modern shape of the Uzunakhmat thrust sheet is similar to an elongated triangle, pinching out northwest and expanding southeast. Cross-section balancing corrected for the amount of strain shows along-strike decreasing of shortening in the southeast direction. Total shortening varies from 35% to 55% between sections located about 15 km from each other. Such significant variation in shortening corresponds to variation in structural style with much more tight folds and more numerous thrusts for cross-sections with a higher amount of shortening. However, the restored length of all cross-sections is quite similar pointing to the approximately rectangular initial shape of the Uzunakhmat thrust sheet. Our interpretation is that during the Caledonian tectonic events, the Uzunakhmat thrust sheet was displaced in the northwest direction with accompanied thrusting and folding of rock units within the thrust sheet. These deformations formed the modern shape of the thrust sheet in accordance with the amount of shortening detected by cross-section balancing. This interpretation also implies that modern erosion did not significantly affect shape of the Uzunakhmat thrust sheet formed after the Caledonian deformation.</p><p>Khudoley, A.K., 1993. Structural and strain analyses of the middle part of the Talassian Alatau ridge (Middle Asia, Kirgiystan). J. Struct. Geol. 6, 693–706.</p><p>Voytenko N.V., Khudoley A.K. Structural evolution of metamorphic rocks in the Talas Alatau, Tien Shan, Central Asia: Implication for early stages of the Talas-Ferghana Fault. // C. R. Geoscience. 2012. V. 344. P. 138–148.</p>


1999 ◽  
Vol 597 ◽  
Author(s):  
B. Ozer ◽  
B.-S. Kang ◽  
C. W. Spangler

AbstractOver the past decade there has been considerable progress in the design of new chromophores for potential optical limiting applications. Most of the focus has been centered on molecules that are capable of efficient excited state absorptions whose cross-sections are larger than the original π–π* excitation cross-section, usually referred to as reverse saturable absorbers (RSAs). The vast majority of chromophores having RSA characteristics depend on efficient intersystem crossing from the excited state singlet (S1) to a highly absorbing and relatively long-lived triplet state (T1). However, much less attention has been paid to alternative excited state absorptions, particularly from charge states such as polaronic radical-ions and bipolaronic diions. In this presentation, we propose that monodisperse dendrimers based on dendron coupling to core molecules such as bisphenol A are potential optical limiting materials based on photo-generation of such charge states in the dendron-attached chromophores, such as dithienylpolyenes. The design and syntheses of these dendrons and dendrimers are presented, and the absorption characteristics of the most likely charge states discussed from an optical limiting perspective.


1997 ◽  
Vol 37 (1) ◽  
pp. 390 ◽  
Author(s):  
G.T. Cooper ◽  
K.C. Hill

Recent advances in cross-section balancing software have simplified the application of basic geometric constraints to the analysis of basin development. Geometric analysis of field and seismic data allows the user to verify initial interpretations and also elucidates important information about the structural evolution of a basin. Principally, computerised balancing and restoration of cross-sections assists in constraining:the amount of crustal extension;trap geometries, particularly fault geometries through time;the geometry of key horizons at any time, revealing basin morphology and migration paths;the time and amount of maximum burial and hence hydrocarbon migration; andthe likely mechanisms involved in basin evolution. In turn, these parameters can be used to further assess hydrocarbon prospectivity by providing useful data for lithospheric modelling.This study utilises 2D cross-section balancing software (Geosec™) to decompact, balance and restore a series of regional onshore-offshore cross-sections based on both reflection seismic data in the Torquay Embayment and field mapping in the Otway Ranges. The thickness of eroded strata has been constrained by Apatite Fission Track and Vitrinite Reflectance analyses. The resulting section restoration suggests that the eastern Otway Basin experienced extension of 26 per cent in the Early Cretaceous and that the Otway Ranges were subjected to −8 per cent shortening during mid-Cretaceous inversion and −4 per cent shortening during Mio-Pliocene inversion.The structural style of the Otway Ranges and Torquay Embayment is typified by steep, relatively planar, en echelon, N and NE-dipping Early Cretaceous extension faults that were subsequently inverted and eroded during the Cenomanian and Mio-Pliocene. The structural style of the region shows strong similarities with oblique- rift analogue models suggesting that the extensional history of the region was strongly controlled by prevailing basement fabric.Lower Cretaceous source rocks in the eastern Otway Basin reached maximum maturity prior to mid-Cretaceous inversion with the exception of parts of the Torquay Embayment which may not have experienced significant uplift and erosion at this time. The lack of subsidence in the eastern Otway Basin prevented the deposition of significant amounts of Upper Cretaceous sediments which are proven reservoirs in the western Otway Basin and Gippsland Basin. Subsequent Tertiary burial was insufficient, in most regions, to allow the source rocks re-enter the oil generation window.


2018 ◽  
Vol 45 (2) ◽  
pp. 249 ◽  
Author(s):  
Fernando Lebinson ◽  
Martín Turienzo ◽  
Natalia Sánchez ◽  
Vanesa Araujo ◽  
María Celeste D’Annunzio ◽  
...  

The Agrio fold and thrust belt is a thick-skinned orogenic belt developed since Late Cretaceous in response to the convergence between the Nazca and South American plates. The integration of new structural field data and seismic line interpretation allowed us to create two balanced cross-sections, which help to analyse the geometry of both thick and thin-skinned structures, to calculate the tectonic shortenings and finally to discuss the main mechanisms that produced this fold and thrust belt. The predominantly NNW-SSE structures show varying wavelengths, and can be classified into kilometer-scale first order basement involved structures and smaller second, third and fourth order fault-related folds in cover rocks with shallower detachments. Thick-skinned structures comprise fault-bend folds moving into the sedimentary cover, mainly along Late Jurassic evaporites, which form basement wedges that transfer the deformation to the foreland. Thus, shortenings in both basement and cover rocks must be similar and consequently, by measuring the contraction accounted for thin-skinned structures, is possible to propose a suitable model for the thick skinned deformation. The balanced cross-sections indicate shortenings of 11.2 km (18%) for the northern section and 10.9 km (17.3%) for the southern section. These values are different from the shortenings established by previous works in the region, reflecting differences in the assumed model to explain the basement-involved structures. According to our interpretation, the structural evolution of this fold and thrust belt was controlled by major basement-involved thrust systems with subordinate influence of inversion along pre-existing normal faults during the Andean compression.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Sign in / Sign up

Export Citation Format

Share Document