scholarly journals A Study on Blend Ratio-dependent Far-IR and Low-frequency Raman Spectra and WAXD Patterns of Poly(3-hydroxybutyrate)/poly(4-vinylphenol) Using Homospectral and Heterospectral Two-dimensional Correlation Spectroscopy

2020 ◽  
Vol 36 (6) ◽  
pp. 731-737
Author(s):  
Dian MARLINA ◽  
Yeonju PARK ◽  
Hiromichi HOSHINA ◽  
Yukihiro OZAKI ◽  
Young Mee JUNG ◽  
...  
2019 ◽  
Vol 73 (9) ◽  
pp. 1012-1018 ◽  
Author(s):  
Shuyu Xu ◽  
D. Bruce Chase ◽  
John F. Rabolt ◽  
Isao Noda

Raman spectra of a series of binary solution mixtures, including chloroform (CHCl3), ethanol (EtOH), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), were analyzed using the two-dimensional correlation spectroscopic (2D-COS) technique in the low frequency region. Numerous asynchronous cross-peaks ubiquitously appeared in the concentration-dependent Raman spectra of these organic solvent mixtures. The result clearly demonstrated a deviation from ideal solution behavior, reflecting the presence of specific molecular interactions causing a subtle nonlinear spectral intensity response of Raman bands to the concentration changes. Furthermore, the combination of 2D-COS and low frequency Raman spectroscopy was extended to poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx) copolymer solutions in CHCl3-HFIP co-solvents. The results suggest the existence of hydrogen bonding interaction between the PHBHx and HFIP, which is consistent with the previous infrared spectroscopic study of PHBHx solutions.


1996 ◽  
Vol 4 (1) ◽  
pp. 139-152 ◽  
Author(s):  
F.E. Barton ◽  
D.S. Himmelsbach ◽  
D.D. Archibald

Two-dimensional correlation spectroscopy across the near infrared (NIR) and mid-infrared (MIR) regions have been used to explain the NIR spectra of hard red winter and spring wheat and provide additional confidence in analytical models developed with empirical data. Recent studies have shown that the major C–H stretching vibrations and some of the aromatic C–H and ring stretching vibrations and the minor vibrations in the “fingerprint” region are correlated also. The technique has been expanded to include Raman spectra. The Raman spectra were enhanced with Maximum Likelihood methods to improve signal-to-noise (S/N) while maintaining resolution. This was necessary to eliminate the effects of fluorescence which degrades S/N. The use of NIR lasers at 1.1 μm generally eliminates fluorescence as a problem, but it is still quite prevalent in agricultural materials. The original study did not show any significant correlations to aromatic functionality. However, the band at 1552 nm correlates to the Raman and not to the MIR. This band has shown up in NIR spectroscopy models for the determination of lignin, but is not readily observed in the MIR. Thus it correlates to a Raman active rather than a MIR active band. The same phenomena are observed for the amide I, II and III bands for wheat. The interesting features from NIR and MIR are that there are correlations that distinguish winter from spring wheat. These, and the Raman spectra of wheat, will be shown. These studies show that multiple regions of the electromagnetic spectrum can be, and in deed need to be, used to interpret adequately the spectral and statistical results we have traditionally obtained in the NIR.


1993 ◽  
Vol 47 (9) ◽  
pp. 1343-1344 ◽  
Author(s):  
Ken Ebihara ◽  
Hiroaki Takahashi ◽  
Isao Noda

Nanosecond two-dimensional resonance Raman spectroscopy was used to investigate the photochemistry of the production and decay of the radical anion of benzil in various solvents. A newly developed correlation formalism was applied to a set of time-resolved resonance Raman spectra of the benzil radical anion to generate two-dimensional Raman spectra. Unlike the 2D correlation method previously developed for IR spectroscopy, which was based on signals induced by a sinusoidally varying external perturbation, the new correlation formalism is generally applicable to the studies of any transient spectroscopic signals having an arbitrary waveform. This makes it ideally suited for the analysis of time-resolved spectroscopic signals following photoexcitation. 2D Raman spectra effectively accentuate certain useful information which is sometimes obscured in the original time-resolved spectra. Spectral intensity changes and peak shifts arising from the photochemical reaction processes were clearly observed by the synchronous and asynchronous correlation.


1996 ◽  
Vol 50 (4) ◽  
pp. 467-475 ◽  
Author(s):  
William Fred McClure ◽  
Hisashi Maeda ◽  
Jian Dong ◽  
Yongliang Liu ◽  
Yukihiro Ozaki

Two-dimensional (2D) correlation of near-infrared (NIR) and Raman spectra was carried out for mixtures of protein (lysozyme) and sugar (sucrose) to investigate the potential of this technique for qualitative NIR spectral interpretation. Cross-correlation by least-squares was employed to assess changes in both sets of spectra which result from changes in the set of sample spectra. Fourier transform (FT) NIR and NIR-excited FT-Raman spectra were measured for each of the samples under the same conditions, and point-for-point 2D cross-correlation was calculated. In this technique, each wavenumber in the NIR region gives rise to a sliced Raman spectrum where each data point is correlated to the NIR wavenumber, while each wavenumber in a Raman spectrum provides a sliced NIR spectrum in which each data point is correlated to the Raman wavenumber. For example, choosing NIR wavenumbers 7272, 6960, 6324, and 4812 cm−1 gives sliced Raman spectra with features attributable to sucrose, while choosing NIR wavenumbers at 8424, 5148, 5052, and 4584 cm−1 provides slices with distinct lysozyme features. Therefore, the technique permits the determination of the most probable origin of NIR signals by connecting NIR spectra, which have rather broad and overlapped bands, to Raman spectra consisting of sharp and clearly separated bands. It is also possible to produce sliced NIR spectra of lysozyme and sucrose by properly selecting wavenumbers in their Raman spectra. The NIR slices explain which wavenumbers in the NIR region are correlated to lysozyme or to sucrose. Thus, 2D correlation spectroscopy helps explain the reasons why certain wavenumbers are selected in a chemometric calibration model.


2010 ◽  
Author(s):  
David Gillis ◽  
Jacob Grun ◽  
Jeffrey Bowles

Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


Sign in / Sign up

Export Citation Format

Share Document