scholarly journals Evaluation of various atmospheric radon monitors

Author(s):  
Ileana Radulescu ◽  
Mihail-Razvan Ioan ◽  
Aurelian Luca
Keyword(s):  
2006 ◽  
Vol 21 (6) ◽  
pp. 1064-1072 ◽  
Author(s):  
Yumi Yasuoka ◽  
George Igarashi ◽  
Testuo Ishikawa ◽  
Shinji Tokonami ◽  
Masaki Shinogi

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Daichi Iwata ◽  
Hiroyuki Nagahama ◽  
Jun Muto ◽  
Yumi Yasuoka

2020 ◽  
Vol 13 ◽  
pp. 120
Author(s):  
C. A. Papachristodoulou ◽  
K. G. Ioannides ◽  
K. C. Stamoulis ◽  
D. L. Patiris ◽  
S. B. Pavlides

An investigation of atmospheric radon levels in the Perama Cave, North-western Greece, has been carried out using CR-39 detectors. The detectors were placed at various locations along the guided cave pathway and exposed during different sampling periods. Mean concentrations amounting to 925±418 and 1311±352 Bq m-3 were recorded in the summer and winter months, respectively. The quantification of effective doses from radon daughters' inhalation was important, as the Perama Cave is one of the most popular in Greece, attracting more than 85,000 tourists per year. Due to the short duration of the guided tour along the cave, exposure of tourists was found to be insignificant, lying below 5.1 μSv per visit. Permanent cave guides receive doses ranging from 4.2 to 5.9 mSv y-1. Considering the ICRP-65 recommendation that action levels in dwellings and workplaces should be set between 3 and 10 mSv y-1 untertaking remedial measures to reduce the exposure of cave staff may be appropriate.


2010 ◽  
Vol 45 (3) ◽  
pp. 244-252
Author(s):  
Michikuni SHIMO ◽  
Mitsuaki OKA ◽  
Junya YAMADA ◽  
Masahiro HOSODA ◽  
Toshiharu KONISHI ◽  
...  
Keyword(s):  

1988 ◽  
Vol 24 (1-4) ◽  
pp. 93-95 ◽  
Author(s):  
T. Nishikawa ◽  
S. Okabe ◽  
M. Aoki

Abstract The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan.


2007 ◽  
Vol 7 (5) ◽  
pp. 629-635 ◽  
Author(s):  
Y. Omori ◽  
Y. Yasuoka ◽  
H. Nagahama ◽  
Y. Kawada ◽  
T. Ishikawa ◽  
...  

Abstract. Anomalous emanation of radon (222Rn) was observed preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes of atmospheric electric field and ionospheric disturbances). Here we analyze atmospheric radon concentration and estimate changes of electrical conditions in atmosphere due to preseismic radon anomaly. The increase of radon emanation obeys crustal damage evolution, following a power-law of time-to-earthquake. Moreover, the radon emanation decreases the atmospheric electric field by 40%, besides influencing the maximum strength of atmospheric electric field by 104–105 V/m enough to trigger ionospheric disturbances. These changes are within the ranges observed or explaining electromagnetic phenomena associated with large earthquakes.


Geophysics ◽  
1992 ◽  
Vol 57 (2) ◽  
pp. 279-287 ◽  
Author(s):  
B. R. S. Minty

We have developed a new technique for estimating airborne gamma‐ray spectrometric backgrounds. The background comes from three sources, namely aircraft, cosmic and atmospheric (radon) radiation. The aircraft and cosmic components are independently estimated by suitable calibration and the monitoring of a 3–6 MeV “cosmic” channel. Multichannel observations of the spectra are used to estimate the atmospheric background directly based on the observation that for gamma‐ray counts above the Compton continuum, the low energy [Formula: see text] photopeak at 0.609 MeV for atmospheric radiation suffers far less attenuation relative to the [Formula: see text] peak at 1.76 MeV than is the case for radiation from uranium in the ground. Since thorium and potassium sources do not contribute appreciably to these peak countrates, they can be used to calculate the contributions of radon and uranium to the observed spectrum. The technique appears to be less susceptible to errors due to the effects of variations in the vertical distribution of airborne radon and its daughters than upward‐looking detector techniques.


2020 ◽  
Vol 13 (5) ◽  
pp. 2241-2255
Author(s):  
Claudia Grossi ◽  
Scott D. Chambers ◽  
Olivier Llido ◽  
Felix R. Vogel ◽  
Victor Kazan ◽  
...  

Abstract. The use of the noble gas radon (222Rn) as a tracer for different research studies, for example observation-based estimation of greenhouse gas (GHG) fluxes, has led to the need of high-quality 222Rn activity concentration observations with high spatial and temporal resolution. So far a robust metrology chain for these measurements is not yet available. A portable direct atmospheric radon monitor (ARMON), based on electrostatic collection of 218Po, is now running at Spanish stations. This monitor has not yet been compared with other 222Rn and 222Rn progeny monitors commonly used at atmospheric stations. A 3-month intercomparison campaign of atmospheric 222Rn and 222Rn progeny monitors based on different measurement techniques was realized during the fall and winter of 2016–2017 to evaluate (i) calibration and correction factors between monitors necessary to harmonize the atmospheric radon observations and (ii) the dependence of each monitor's response in relation to the sampling height and meteorological and atmospheric aerosol conditions. Results of this study have shown the following. (i) All monitors were able to reproduce the atmospheric radon variability on a daily basis. (ii) Linear regression fits between the monitors exhibited slopes, representing the correction factors, between 0.62 and 1.17 and offsets ranging between −0.85 and −0.23 Bq m−3 when sampling 2 m above ground level (a.g.l.). Corresponding results at 100 m a.g.l. exhibited slopes of 0.94 and 1.03 with offsets of −0.13 and 0.01 Bq m−3, respectively. (iii) No influence of atmospheric temperature and relative humidity on monitor responses was observed for unsaturated conditions at 100 m a.g.l., whereas slight influences (order of 10−2) of ambient temperature were observed at 2 m a.g.l. (iv) Changes in the ratio between 222Rn progeny and 222Rn monitor responses were observed under very low atmospheric aerosol concentrations. Results also show that the new ARMON could be useful at atmospheric radon monitoring stations with space restrictions or as a mobile reference instrument to calibrate in situ 222Rn progeny monitors and fixed radon monitors. In the near future a long-term comparison study between ARMON, HRM, and ANSTO monitors would be useful to better evaluate (i) the uncertainties of radon measurements in the range of a few hundred millibecquerels per cubic meter to a few becquerels per cubic meter and (ii) the response time correction of the ANSTO monitor for representing fast changes in the ambient radon concentrations.


Sign in / Sign up

Export Citation Format

Share Document