Purification of Natural Gas by Use of Carbon-Molecular-Sieve Membranes

2015 ◽  
Vol 67 (04) ◽  
pp. 114-116
Author(s):  
Chris Carpenter
2017 ◽  
Vol 56 (37) ◽  
pp. 10482-10490 ◽  
Author(s):  
Chen Zhang ◽  
Graham B. Wenz ◽  
P. Jason Williams ◽  
Joseph M. Mayne ◽  
Gongping Liu ◽  
...  

2020 ◽  
Vol 614 ◽  
pp. 118529 ◽  
Author(s):  
Linfeng Lei ◽  
Arne Lindbråthen ◽  
Xiangping Zhang ◽  
Evangelos P. Favvas ◽  
Marius Sandru ◽  
...  

1993 ◽  
Vol 10 (1-4) ◽  
pp. 193-201 ◽  
Author(s):  
Z.J. Pan ◽  
S.G. Chen ◽  
J. Tang ◽  
R.T. Yang

The equilibrium adsorption of H2S is substantially stronger than that of CH4 on carbons, including carbon molecular sieve (CMS). A carbon molecular sieve with a proper pore structure can provide a kinetic selectivity for H2S over CH4, thus further enhancing the overall selectivity (equilibrium plus kinetic) for H2S and providing the basis of natural gas desulfurization by adsorption. Kinetic selectivity requires a unique pore structure due to the small difference in the molecular dimensions of H2S and CH4 (~0.2 Å). Equilibrium and diffusion rate data for CH4 and H2S at 25°C have been measured in three commercial carbon molecular sieves: Bergbau Forschung CMS, Takeda CMS 3A and Takeda CMS 5A. The pores are either too small (in the two former carbons) or too large (in CMS 5A) for H2S/CH4 separation. Alterations to the pore structure either by controlled oxidation or carbon deposition by pyrolysis have been studied. Optimal results were obtained by pyrolysis of propylene on CMS 5A under the following conditions: 0.05 atm, 700°C, 5 min, weight gain of 0.67%. The resulting carbon molecular sieve retained the high equilibrium adsorption capacities while yielding a diffusion time constant ratio for H2S/CH4 of 8.2. This carbon is suitable for natural gas desulfurization by adsorption processes such as pressure swing adsorption. Temperature was the most important variable in pore structure alteration by carbon deposition. Under the optimal pyrolysis conditions, carbon was only deposited near the pore entrances.


2019 ◽  
Vol 585 ◽  
pp. 1-9 ◽  
Author(s):  
Khalid Hazazi ◽  
Xiaohua Ma ◽  
Yingge Wang ◽  
Wojciech Ogieglo ◽  
Abdulrahman Alhazmi ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 104
Author(s):  
Hung-Yang Kuo ◽  
Wei-Riu Cheng ◽  
Tzu-Heng Wu ◽  
Horn-Jiunn Sheen ◽  
Chih-Chia Wang ◽  
...  

This paper presents the synthesis and evaluation of a carbon molecular sieve membrane (CMSM) grown inside a MEMS-fabricated μ-preconcentrator for sampling highly volatile organic compounds. An array of µ-pillars measuring 100 µm in diameter and 250 µm in height were fabricated inside a microfluidic channel to increase the attaching surface for the CMSM. The surface area of the CMSM was measured as high as 899 m2/g. A GC peak amplification factor >2 × 104 was demonstrated with gaseous ethyl acetate. Up to 1.4 L of gaseous ethanol at the 100 ppb level could be concentrated without exceeding the capacity of this microchip device. Sharp desorption chromatographic peaks (<3.5 s) were obtained while using this device directly as a GC injector. Less volatile compounds such as gaseous toluene, m-xylene, and mesitylene appeared to be adsorbed strongly on CMSM, showing a memory effect. Sampling parameters such as sample volatilities, sampling capacities, and compound residual issues were empirically determined and discussed.


2018 ◽  
Vol 39 (17) ◽  
pp. 2218-2227 ◽  
Author(s):  
Li-Jing Du ◽  
Jian-Ping Huang ◽  
Bin Wang ◽  
Chen-Hui Wang ◽  
Qiu-Yan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document