Improved Characterization and Modeling of Capillary Transition Zones in Carbonate Reservoirs

2007 ◽  
Vol 10 (02) ◽  
pp. 191-204 ◽  
Author(s):  
Shehadeh K. Masalmeh ◽  
Issa M. Abu-Shiekah ◽  
Xudong Jing

Summary An oil/water capillary transition zone often contains a sizable portion of a field's initial oil in place, especially for those carbonate reservoirs with low matrix permeability. The field-development plan and ultimate recovery may be influenced heavily by how much oil can be recovered from the transition zone. This in turn depends on a number of geological and petrophysical properties that influence the distribution of initial oil saturation (Sor) against depth, and on the rock and fluid interactions that control the residual oil saturation (Sor), capillary pressure, and relative permeability characteristics as a function of initial oil saturation. Because of the general lack of relevant experimental data and the insufficient physical understanding of the characteristics of the transition zone, modeling both the static and dynamic properties of carbonate fields with large transition zones remains an ongoing challenge. In this paper, we first review the transition-zone definition and the current limitations in modeling transition zones. We describe the methodology recently developed, based on extensive experimental measurements and numerical simulation, for modeling both static and dynamic properties in capillary transition zones. We then address how to calculate initial-oil-saturation distribution in the carbonate fields by reconciling log and core data and taking into account the effect of reservoir wettability and its impact on petrophysical interpretations. The effects of relative permeability and imbibition capillary pressure curves on oil recovery in heterogeneous reservoirs with large transition zones are assessed. It is shown that a proper description of relative permeability and capillary pressure curves including hysteresis, based on experimental special-core-analysis (SCAL) data, has a significant impact on the field-performance predictions, especially for heterogeneous reservoirs with transition zones. Introduction The reservoir interval from the oil/water contact (OWC) to a level at which water saturation reaches irreducible is referred to as the capillary transition zone. Fig. 1 illustrates a typical capillary transition zone in a homogeneous reservoir interval within which both the oil and water phases are mobile. The balance of capillary and buoyancy forces controls this so-called capillary transition zone during the primary-drainage process of oil migrating into an initially water-filled reservoir trap. Because the water-filled rock is originally water-wet, a certain threshold pressure must be reached before the capillary pressure in the largest pore can be overcome and the oil can start to enter the pore. Hence, the largest pore throat determines the minimum capillary rise above the free-water level (FWL). As shown schematically in Fig. 2, close to the OWC, the oil/water pressure differential (i.e., capillary pressure) is small; therefore, only the large pores can be filled with oil. As the distance above the OWC increases, an increasing proportion of smaller pores are entered by oil owing to the increasing capillary pressure with height above the FWL. The height of the transition zone and its saturation distribution is determined by the range and distribution of pore sizes within the rock, as well as the interfacial-force and density difference between the two immiscible fluids.

1971 ◽  
Vol 11 (01) ◽  
pp. 63-71 ◽  
Author(s):  
K.H. Coats ◽  
J.R. Dempsey ◽  
J.H. Henderson

Abstract This paper discusses the use of the Vertical Equilibrium (VE) concept in simulating heterogeneous reservoirs. Where VE criteria are met, this technique allows two-dimensional (2-D) simulation of three-dimensional (3-D) problems with equivalent accuracy, and with attendant substantial savings in data preparation and machine time. The paper presents the VE concept itself and a new dimensionless group as a possible criterion for the validity of VE as applied to thick reservoirs or to reservoirs where the capillary transition zone is a small fraction of thickness. A description of the generation of the appropriate pseudo relative permeability and capillary pressure curves is permeability and capillary pressure curves is presented. presented. In addition to the dimensionless group criterion, an actual comparison of the results of an x-z cross-section and a one-dimensional (1-D) areal run with VE illustrates the validity of the VE concept. Numerical results of such a comparison along with the attendant machine-time requirements are presented. More than an order of magnitude difference in machine-time requirements was experienced. Finally, an actual field case example shows the utility of VE as applied to a reservoir containing one or multiple gas pools residing on a common aquifer. Introduction Numerical simulation of reservoir performance currently encompasses a wide variety of recovery processes, reservoir types and purposes or questions processes, reservoir types and purposes or questions to which answers are sought. A feature common to virtually all reservoir simulation studies, however, is the choice of simulation in one, two or three dimensions. Most frequently this choice is one between an areal (x-y) study and a 3-D study. While the areal study is considerably cheaper than a 3-D simulation, the validity or accuracy of the former is often questioned in light of its apparent inability to simulate flow and fluid saturation distributions in the vertical direction. Areal studies are frequently performed with little attention to or understanding of the extent to which the x-y calculations do or can be made to account for this vertical flow and fluid distribution. Previous papers describe a VE assumption or concept which leads to the definition of pseudo relative permeability and capillary pressure curves to be used in areal studies to simulate 3-D flow. A dimensionless group proposed as a criterion for the assumptions validity primarily treats the case of a reservoir where the capillary transition zone is an appreciable fraction of reservoir thickness. This paper neats the case of a reservoir where the capillary capillary transition zone is a small fraction of reservoir thickness (e.g., less than 10 percent). We propose to describe the VE concept as percent). We propose to describe the VE concept as applied to thick reservoirs or to reservoirs where capillary transition zone is a small fraction of thickness; to describe the generation of appropriate relative permeability and capillary pressure curves for such reservoirs to represent 3-D performance by 2-D areal calculations; to propose a new dimensionless group as a criterion for the VE assumptions' validity, obtained from an analysis of countercurrent gravity segregation; and finally, to present a cross-sectional vs 1-D (VE) comparison and a 2-D areal field case study. THE VERTICAL EQUILIBRIUM CONCEPT Most oil and gas reservoirs extend distances areally which are at least two orders of magnitude greater than reservoir thickness. Viewed in perspective, these reservoirs appear as "blankets" perspective, these reservoirs appear as "blankets" For a variety of reasons, some valid and some invalid, numerical simulations of such reservoirs are performed occasionally in three dimensions as opposed to only two areal (x-y) dimensions. SPEJ P. 63


2020 ◽  
pp. 67-76
Author(s):  
G. E. Stroyanetskaya

The article is devoted to the usage of models of transition zones in the interpretation of geological and geophysical information. These models are graphs of the dependences of oil-saturation factors of the collectors on their height above the level with zero capillary pressure, taking into account the geological and geophysical parameter. These models are not recommended for estimating oilsaturation factors of collectors in the transition zone. The height of occurrence of the collector above the level of zero capillary pressure can be estimated from model of the transition zone that take into account the values of the coefficients of residual water saturation factor of the collectors, but only when the model of the transition zone is confirmed by data capillarimetry studies on the core.


Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050055
Author(s):  
HAIBO SU ◽  
SHIMING ZHANG ◽  
YEHENG SUN ◽  
XIAOHONG WANG ◽  
BOMING YU ◽  
...  

Oil–water relative permeability curve is an important parameter for analyzing the characters of oil and water seepages in low-permeability reservoirs. The fluid flow in low-permeability reservoirs exhibits distinct nonlinear seepage characteristics with starting pressure gradient. However, the existing theoretical model of oil–water relative permeability only considered few nonlinear seepage characteristics such as capillary pressure and fluid properties. Studying the influences of reservoir pore structures, capillary pressure, driving pressure and boundary layer effect on the morphology of relative permeability curves is of great significance for understanding the seepage properties of low-permeability reservoirs. Based on the fractal theory for porous media, an analytically comprehensive model for the relative permeabilities of oil and water in a low-permeability reservoir is established in this work. The analytical model for oil–water relative permeabilities obtained in this paper is found to be a function of water saturation, fractal dimension for pores, fractal dimension for tortuosity of capillaries, driving pressure gradient and capillary pressure between oil and water phases as well as boundary layer thickness. The present results show that the relative permeabilities of oil and water decrease with the increase of the fractal dimension for tortuosity, whereas the relative permeabilities of oil and water increase with the increase of pore fractal dimension. The nonlinear properties of low-permeability reservoirs have the prominent significances on the relative permeability of the oil phase. With the increase of the seepage resistance coefficient, the relative permeability of oil phase decreases. The proposed theoretical model has been verified by experimental data on oil–water relative permeability and compared with other conventional oil–water relative permeability models. The present results verify the reliability of the oil–water relative permeability model established in this paper.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Dong Ma ◽  
Changwei Liu ◽  
Changhui Cheng

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.


2016 ◽  
Vol 96 ◽  
pp. 225-236 ◽  
Author(s):  
Naum I. Gershenzon ◽  
Robert W. Ritzi Jr. ◽  
David F. Dominic ◽  
Edward Mehnert ◽  
Roland T. Okwen

Sign in / Sign up

Export Citation Format

Share Document