Wettability Alteration of Fractured Carbonate Reservoirs

Author(s):  
Robin Gupta ◽  
Kishore Kumar Mohanty
SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hang Su ◽  
Fujian Zhou ◽  
Qing Wang ◽  
Fuwei Yu ◽  
Rencheng Dong ◽  
...  

Summary Enhanced oil recovery (EOR) in fractured carbonate reservoirs is challenging because of the heterogeneous and oil-wet nature. In this work, a new application of using polymer nanospheres (PNSs) and diluted microemulsion (DME) is presented to plug fractures and enhance water imbibition to recover oil from the tight, naturally fractured carbonate reservoirs. DME with different electric charges is compared through contact-angle and core-imbibition tests to evaluate their performances on EOR. The cationic DME is chosen because it has the fastest wettability-alteration rate and thus the highest oil recovery rate. Migration and plugging efficiency tests are conducted to identify the screened particle sizes of PNSs for the target reservoir cores. PNSs with a particle size of 300 nm are demonstrated to have the best performance of in-depth propagation before swelling and plugging after swelling within the naturally fractured cores are used in this study. Then coreflooding experiments are conducted to evaluate the EOR performance when PNSs and DME are used together, and results indicate that the oil recovery rate is increased by 24.3 and 44.1% compared to using PNSs or DME alone. In the end, a microfluidic experiment is carried out to reveal how DME works with PNSs.


2015 ◽  
Author(s):  
S. Agada ◽  
S. Geiger ◽  
A.H. Elsheikh ◽  
E. Mackay ◽  
S. Oladyshkin

2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


2006 ◽  
Author(s):  
Dick Jacob Ligthelm ◽  
Paul Jacob van den Hoek ◽  
Pascal Hos ◽  
Marinus J. Faber ◽  
Roeland Roeterdink

2014 ◽  
Author(s):  
A. Moreno ◽  
S. Rosales ◽  
T. Reséndiz ◽  
E. Ramírez ◽  
F. Tellez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document