Removal of Overburden Channel Effects through Channel Velocity Modeling and Prestack Depth Migration

2008 ◽  
Author(s):  
Mamoru Takanashi ◽  
Mitsuyoshi Kaneko ◽  
Nobuaki Monzawa ◽  
Seiichi Imahori ◽  
Toshihisa Ishibashi ◽  
...  
2020 ◽  
Author(s):  
Gong Ting ◽  
Wang Zhaolei ◽  
Gu Xiaodi ◽  
Luo Wenshan ◽  
Zhang Xuan ◽  
...  

2009 ◽  
Vol 74 (1) ◽  
pp. 29-39
Author(s):  
Masamichi Fujimoto ◽  
Mamoru Takanashi ◽  
Mike Szczepaniak ◽  
Takeshi Yoshida ◽  
Nobusuke Shimada

2019 ◽  
Vol 30 (1) ◽  
pp. 23-26
Author(s):  
Iyod Suherman ◽  
Taufan Wiguna ◽  
Rahadian Rahadian ◽  
Djunaedi Muljawan ◽  
Omar Moefti

The quality of seismic is important for interpretation. Prestack Depth Migration produce better quality of seismic imaging. The seismic generated through PSDM method has better seismic reflector and geological structure appearance compared to Prestack Time Migration (PSTM) method. Accurate interval velocity modeling is a key in PSDM process, involving dix transformation, coherency inversion, and tomography. Comparison between PSTM and PSDM show that PSDM offer better imaging for interpretation because PSDM has better seismic reflector continuity and good geological appearance.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


2006 ◽  
Author(s):  
Scott MacKay ◽  
Héctor Ramírez Jiménez ◽  
Jorge San Martín Romero ◽  
Mark Morford

Sign in / Sign up

Export Citation Format

Share Document