Multidimensional Upwinding for Multiphase Transport in Porous Media

SPE Journal ◽  
2011 ◽  
Vol 16 (02) ◽  
pp. 263-272 ◽  
Author(s):  
J.. Kozdon ◽  
B.. Mallison ◽  
M.. Gerritsen ◽  
W.. Chen

Summary Multidimensional transport for reservoir simulation is typically solved by applying 1D numerical methods in each spatial-coordinate direction. This approach is simple, but the disadvantage is that numerical errors become highly correlated with the underlying computational grid. In many real-field applications, this can result in strong sensitivity to grid design not only for the computed saturation/composition fields but also for critical integrated data such as breakthrough times. Therefore, to increase robustness of simulators, especially for adverse-mobility-ratio flows that arise in a variety of enhanced-oil-recovery (EOR) processes, it is of much interest to design truly multidimensional schemes for transport that remove, or at least strongly reduce, the sensitivity to grid design. We present a new upstream-biased truly multidimensional family of schemes for multiphase transport capable of handling countercurrent flow arising from gravity. The proposed family of schemes has four attractive properties: applicability within a variety of simulation formulations with varying levels of implicitness, extensibility to general grid topologies, compatibility with any finite-volume flow discretization, and provable stability (monotonicity) for multiphase transport. The family is sufficiently expressive to include several previously developed multidimensional schemes, such as the narrow scheme, in a manner appropriate for general-purpose reservoir simulation. A number of waterflooding problems in homogeneous and heterogeneous media demonstrate the robustness of the method as well as reduced transverse (cross-wind) diffusion and grid-orientation effects.

1978 ◽  
Vol 18 (01) ◽  
pp. 13-19 ◽  
Author(s):  
G.E. Robertson

Robertson, G.E., Woo, P.T., Members SPE-AIME, Chevron Oil Field P.T., Members SPE-AIME, Chevron Oil Field Research Co., La Habra, Calif. Abstract Grid orientation effects in reservoir simulation recently have received considerable attention. Several authors have proposed methods to reduce or to eliminate these effects. However, the proposed methods require reprogramming of simulators based on standard techniques. The reprogramming effort can be considerable if the numerical model is highly complex, such as in steamflood simulation. An orthogonal curvilinear coordinate system that essentially eliminates the problem of grid orientation was investigated. With no reprogramming, this computing grid can be used readily in existing simulators. Such grids were used to study pattern steamfloods and pattern waterfloods. The results are compared in detail with those obtained by using conventional Cargesian grids. Grid orientation is shown to have a more pronounced effect on the saturation fronts than oil recovery, whether in a steamflood or a waterflood. It is concluded that orthogonal curvilinear grids can be used easily to estimate pattern flood performance without modification of the solution method. Introduction In a simulation study of unfavorable mobility displacement, the areal orientation of the grid system, with respect to the location of the injectors and producers, can affect the calculated results. This is referred to as the "grid-orientation" effect. Fig. 1 illustrates two Cartesian grid orientations for one-eighth of a repeated five-spot pattern. The "parallel" orientation has a direct-flow pattern. The "parallel" orientation has a direct-flow path along the grid lines between the injector and path along the grid lines between the injector and producer, whereas the path is indirect in the producer, whereas the path is indirect in the "diagonal" system. Using a repeated five-spot pattern, Todd et al., Holloway et al., and Yanosik and McCracken investigated grid-orientation effects in gas or waterfloods. Coats et al. reported grid-orientation effects in steamfloods. In all cases, the investigators found that grid orientation significantly affected the movement of saturation fronts and the breakthrough time. Oil recovery was affected to a lesser extent. The effect appears to increase as the mobility ratio becomes more unfavorable and as the transition zone across the saturation front shortens. Todd et al. presented the two-point mobility approximation to alleviate the grid-orientation effect. Holloway et al. introduced a transmissibility modification scheme to reduce this effect further. While these two schemes can be introduced readily into simulators using explicit relative permeability, it is difficult to implement the schemes in simulators using implicit or semi-implicit relative permeability. Yanosik and McCracken observed that the grid-orientation effect probably was caused by the lack of flow from a grid block to its diagonal neighbors and introduced a nine-point finite-difference formula to account for this flow. SPEJ p. 13


Author(s):  
K. Zobeidi ◽  
M. Mohammad-Shafie ◽  
M. Ganjeh-Ghazvini

AbstractA comprehensive reservoir simulation study was performed on an oil field that had a wide fracture network and could be considered a typical example of highly fractured reservoirs in Iran. This field is located in southwest of Iran in Zagros sedimentary basin among several neighborhood fields with relatively considerable fractured networks. In this reservoir, the pressure drops below the saturation pressure and causes the formation of a secondary gas cap. This can help to better assess the gravity drainage phenomenon. We decided to investigate and track the effect of gravity drainage mechanism on the recovery factor of oil production in this field. In this study, after/before the implementation of gas injection scenarios with different discharges, the contribution of gravity drainage mechanism to the recovery factor was found more than 50%. Considering that a relatively large number of studies have been conducted on this field simultaneously with the growth of information from different aspects and this study is the last and most comprehensive study and also the results are extracted from real field data using existing reservoir simulators, it is of special importance and can be used by researchers.


2021 ◽  
Vol 15 (2) ◽  
pp. 92-95
Author(s):  
Melek Anday Rifat qızı Tolunay ◽  

The general purpose of planned sexual health education for children and young people is to provide them with sufficient information about sexual health according to their age range, to inform them about attitude-value and understanding, to gain relationship and interpersonal skills, to develop their necessary responsibilities. The protection, development and maintenance of sexual health depends on the awareness of individuals about sexuality and sexual health. Awareness begins in the family and is provided with comprehensive sexual health education in accordance with the needs in all periods of life such as preschool, school and after school. Sexual health education is not welcomed in developing countries. At the heart of this is the belief that sexual health education will encourage young people to have sexual intercourse. The development of sexual education is achieved in all age ranges with questions and answers that arise according to different age characteristics. Sexual health education is a very important factor for the psychological and physiological health of individuals in a society. Key words: sexual health education, sexual health education, reproductive health, abuse , parents, child abuse, Source of sexual information


2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


PEDIATRICS ◽  
1972 ◽  
Vol 49 (5) ◽  
pp. 765-766
Author(s):  
Donald J. Fernbach ◽  
William L. Henrich ◽  
Kenneth A. Starling

Since 1958 the Hematology and Oncology Section of the Department of Pediatrics, Baylor College of Medicine, has participated in the studies of the Southwest Cancer Chemotherapy Study Group. From the beginning it was intended that this section would maintain an emphasis on ambulatory care for children with neoplastic diseases and would develop a close liaison with the practicing physician. The general purpose was to supplement the care given by the local physician rather than to assume total management of the patient. The key to the success of any such program, where virtually all patients are referred and are registered on research protocols, is to maintain close communication with the family physician at all times.


Sign in / Sign up

Export Citation Format

Share Document