Water/Oil Displacement Characteristics in Crossbedded Reservoir Zones

1985 ◽  
Vol 25 (06) ◽  
pp. 917-926 ◽  
Author(s):  
T.F.M. Kortekaas

Kortekaas, T.F.M., SPE, Shell Research B.V. Abstract Festoon crossbedding is a typical sedimentary structure in sandstone reservoirs. It is especially common in fluvial deposits. The important elements are the foreset laminae, which vary in permeability, and the bottomsets of lower permeability. To understand the complex, direction-dependent displacement characteristics of a crossbedded reservoir zone, we first conducted numerical simulations on a centimeter scale in a small part of a water-wet crossbedded reservoir zone. The simulations indicate that, during water/oil displacement, considerable amounts of movable oil initially are left behind in the higher-permeability foreset laminae with fluid flow perpendicular to the foreset laminae, while with flow parallel to the foreset laminae the displacement efficiency is good. To describe the displacement characteristics on a reservoir scale, we developed a procedure for calculating direction-dependent pseudo relative-permeability and capillary-pressure curves to be used as input for the simulations of water/oil displacement in a crossbedded reservoir zone. On a reservoir scale, the displacement characteristics in a water-wet crossbedded reservoir zone are slightly more favorable with the main fluid flow perpendicular to the foreset laminae. perpendicular to the foreset laminae. In addition, the sensitivity of the displacement characteristics to moderate reductions in interfacial tensions (IFT's) and to increases in water viscosity was investigated, both on a centimeter scale and on a reservoir scale. The simulations indicate the potential for substantial improvement in recovery from crossbedded reservoir zones if diluted surfactant or polymer is added to the drive water. Introduction Detailed studies of the effect of reservoir heterogeneities on water/oil displacement characteristics have been conducted on a well-to-well (layering) scale and on a pore scale, but few studies on an intermediate scale have been done. Therefore, we embarked on a study of the effect of centimeter-scale heterogeneities on water/oil displacement characteristics. We studied festoon crossbedding, one of the typical sedimentary structures in sandstone reservoirs, particularly common in fluvial deposits. A schematic particularly common in fluvial deposits. A schematic representation of a small part of a crossbedded reservoir zone is given in Fig. 1A. The important elements are the foreset laminae, which vary in permeability, and the bottom-sets, which are of lower permeability. The width of the foreset laminae is exaggerated in Fig. 1A; typically it is a few centimeters. First, we will discuss a mathematical simulation study in a very limited area of a water-wet crossbedded reservoir zone (1.97 × 26.2 × 0.66 ft [0.6 × 8 × O.2 m]). After a brief discussion of the water/oil displacement characteristics near a single permeability transition, we present the water/oil displacement characteristics in some cross sections of a simplified model (Fig. 1B) of a small part of a crossbedded reservoir zone. In addition, their sensitivity to moderate reductions in IFT's and increases in water viscosity are discussed. Second, we describe the effect of crossbedding on water/oil displacement characteristics on a reservoir scale, discuss a procedure for calculating dynamic, direction-dependent pseudo relative-permeability and capillary-pressure curves, and present the results of a reservoir-scale mathematical simulation study, including the pseudo-properties. Also, the sensitivity of the results to changes pseudo-properties. Also, the sensitivity of the results to changes in IFT and water viscosity is discussed. One-Dimensional Water/Oil Displacement Characteristics Near an Abrupt Permeability Transition Permeability Transition suppose we have a one-dimensional (1D) system consisting of two zones with different absolute, but identical relative, permeabilities. Furthermore, the system is horizontal and contains oil and connate water. The Buckley-Leverett first-order partial differential equation describes the water/oil displacement in each zone.In the absence of capillary and gravitational forces, the water fractional flow Fwo) is given byEq. 1, together with Eq. 2, usually leads to a sharp shock front: at each location, water saturation will instantaneously jump from connate water to shock-front saturation when the water arrives. SPEJ p. 917

1965 ◽  
Vol 5 (01) ◽  
pp. 15-24 ◽  
Author(s):  
Norman R. Morrow ◽  
Colin C. Harris

Abstract The experimental points which describe capillary pressure curves are determined at apparent equilibria which are observed after hydrodynamic flow has ceased. For most systems, the time required to obtain equalization of pressure throughout the discontinuous part of a phase is prohibitive. To permit experimental points to be described as equilibria, a model of capillary behavior is proposed where mass transfer is restricted to bulk fluid flow. Model capillary pressure curves follow if the path described by such points is independent of the rate at which the saturation was changed to attain a capillary pressure point. A modified suction potential technique is used to study cyclic relationships between capillary pressure and moisture content for a porous mass. The time taken to complete an experiment was greatly reduced by using small samples. Introduction Capillary retention of liquid by porous materials has been investigated in the fields of hydrology, soil science, oil reservoir engineering, chemical engineering, soil mechanics, textiles, paper making and building materials. In studies of the immiscible displacement of one fluid by another within a porous bed, drainage columns and suction potential techniques have been used to obtain relationships between pressure deficiency and saturation (Fig. 1). Except where there is no hysteresis of contact angle and the solid is of simple geometry, such as a tube of uniform cross section, there is hysteresis in the relationship between capillary pressure and saturation. The relationship which has received most attention is displacement of fluid from an initially saturated bed (Fig. 1, Curve Ro), the final condition being an irreducible minimum fluid saturation Swr. Imbibition (Fig. 1, Curve A), further desaturation (Fig. 1, Curve R), and intermediate scanning curves have been studied to a lesser but increasing extent. This paper first considers the nature of the experimental points tracing the capillary pressure curves with respect to the modes and rates of mass transfer which are operative during the course of measurement. There are clear indications that the experimental points which describe these curves are obtained at apparent equilibria which are observed when viscous fluid flow has ceased; and any further changes in the fluid distribution are the result of much slower mass transfer processes, such as diffusion. Unless stated otherwise, this discussion applies to a stable packing of equal, smooth, hydrophilic spheres supported by a suction plate with water as the wetting phase and air as the nonwetting phase. SPEJ P. 15ˆ


2000 ◽  
Author(s):  
Zhilong He ◽  
Xueyuan Peng ◽  
Pengcheng Shu

Abstract This paper presents a numerical method for simulating the thermal and fluid-dynamic behavior of hermetic compressors in the whole compressor domain. The model of fluid flow is developed by integrating transient one-dimensional conservation equations of continuity, momentum and energy through all of the elements from suction line to discharge line. The model describing thermal behavior is based on heat balance in the components such as muffler, connecting tubes and orifices. The calculation of the thermodynamic and transport properties for different refrigerants at various conditions has been considered, and some numerical results for a hermetic compressor are presented. The present study has demonstrated that the numerical simulation is a fest and reliable tool for compressor design.


2000 ◽  
Author(s):  
Hidemi Shirakawa ◽  
Yasuyuki Takata ◽  
Takehiro Ito ◽  
Shinobu Satonaka

Abstract Numerical method for thermal and fluid flow with free surface and phase change has been developed. The calculation result of one-dimensional solidification problem agrees with Neumann’s theoretical value. We applied it to a bubble growth in superheated liquid and obtained the result that a bubble grows with spherical shape. The present method can be applicable to various phase change problems.


Sign in / Sign up

Export Citation Format

Share Document