Journal of Petroleum Engineering
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By Hindawi Limited

2314-5013, 2314-5005

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Lianshuang Dai ◽  
Dongpo Wang ◽  
Ting Wang ◽  
Qingshan Feng ◽  
Xinqi Yang

The analysis results of long-distance oil and gas pipeline failures are important for the industry and can be the basis of risk analysis, integrity assessment, and management improvement for pipeline operators. Through analysis and comparison of the statistical results of the United States, Europe, the UK, and PetroChina in pipeline failure frequencies, causes, consequences, similarities, and differences of pipeline management, focusing points and management effectiveness are given. Suggestions on long-distance pipeline safety technology and management in China are proposed.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alibi Kilybay ◽  
Bisweswar Ghosh ◽  
Nithin Chacko Thomas

In the oil and gas industry, Enhanced Oil Recovery (EOR) plays a major role to meet the global requirement for energy. Many types of EOR are being applied depending on the formations, fluid types, and the condition of the field. One of the latest and promising EOR techniques is application of ion-engineered water, also known as low salinity or smart water flooding. This EOR technique has been studied by researchers for different types of rocks. The mechanisms behind ion-engineered water flooding have not been confirmed yet, but there are many proposed mechanisms. Most of the authors believe that the main mechanism behind smart water flooding is the wettability alteration. However, other proposed mechanisms are interfacial tension (IFT) reduction between oil and injected brine, rock dissolution, and electrical double layer expansion. Theoretically, all the mechanisms have an effect on the oil recovery. There are some evidences of success of smart water injection on the field scale. Chemical reactions that happen with injection of smart water are different in sandstone and carbonate reservoirs. It is important to understand how these mechanisms work. In this review paper, the possible mechanisms behind smart water injection into the carbonate reservoir with brief history are discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mahmood R. Al-Khayari ◽  
Adel M. Al-Ajmi ◽  
Yahya Al-Wahaibi

In oil industry, wellbore instability is the most costly problem that a well drilling operation may encounter. One reason for wellbore failure can be related to ignoring rock mechanics effects. A solution to overcome this problem is to adopt in situ stresses in conjunction with a failure criterion to end up with a deterministic model that calculates collapse pressure. However, the uncertainty in input parameters can make this model misleading and useless. In this paper, a new probabilistic wellbore stability model is presented to predict the critical drilling fluid pressure before the onset of a wellbore collapse. The model runs Monte Carlo simulation to capture the effects of uncertainty in in situ stresses, drilling trajectories, and rock properties. The developed model was applied to different in situ stress regimes: normal faulting, strike slip, and reverse faulting. Sensitivity analysis was applied to all carried out simulations and found that well trajectories have the biggest impact factor in wellbore instability followed by rock properties. The developed model improves risk management of wellbore stability. It helps petroleum engineers and field planners to make right decisions during drilling and fields’ development.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Milad Rahnema ◽  
Hamed Rahnema ◽  
Marcia D. Mcmillan ◽  
Ali Reza Edrisi ◽  
Hamid Rahnema

Vapor extraction (Vapex) is an emerging technology to produce heavy oil and bitumen from subsurface formations. Single well (SW) Vapex technique uses the same concept of Vapex process but only with one horizontal well. In this process solvent is injected from the toe of the horizontal well with oil production at the heel section. The main advantage of SW-Vapex process lies in the economic saving and applicability in problematic reservoirs, where drilling of two horizontal wells is impractical. The performance of SW-Vapex seems to be comparable with dual horizontal Vapex process using proper optimization schemes. This study is grouped into two sections: (i) a screening study of early time operating performance of SW-Vapex and (ii) a sensitivity analysis of the effect of the reservoir and well completion parameters. Simulation results show that solvent injection rate can be optimized to improve oil production rate. Higher injection rates may not necessarily lead to increase in production. This study confirms that SW-Vapex process is very ineffective in reservoirs with high oil viscosity (more than 1,500 cp) and thin formations (less than 10 m).


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Titus Ntow Ofei ◽  
Aidil Yunus Ismail

In this study, a computational fluid dynamics (CFD) simulation which adopts the inhomogeneous Eulerian-Eulerian two-fluid model in ANSYS CFX-15 was used to examine the influence of particle size (90 μm to 270 μm) and in situ particle volume fraction (10% to 40%) on the radial distribution of particle concentration and velocity and frictional pressure loss. The robustness of various turbulence models such as the k-epsilon (k-ε), k-omega (k-ω), SSG Reynolds stress, shear stress transport, and eddy viscosity transport was tested in predicting experimental data of particle concentration profiles. The k-epsilon model closely matched the experimental data better than the other turbulence models. Results showed a decrease in frictional pressure loss as particle size increased at constant particle volume fraction. Furthermore, for a constant particle volume fraction, the radial distribution of particle concentration increased with increasing particle size, where high concentration of particles occurred at the bottom of the pipe. Particles of size 90 μm were nearly buoyant especially for high particle volume fraction of 40%. The CFD study shows that knowledge of the variation of these parameters with pipe position is very crucial if the understanding of pipeline wear, particle attrition, or agglomeration is to be advanced.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
B. Ghosh

Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity) in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor) is measured through glass micromodel (to aid visual observation), linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges) were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Dayanand Saini

Different experimental and theoretical methods are used for predicting the minimum miscibility pressure (MMP) of complex CO2 + reservoir crude oil systems that are of particular interest to petroleum industry. In this paper, published physical and numerical vanishing interfacial tension (VIT) experimentations are critically examined for identifying best practices to reliably predict the CO2 + crude oil MMP. Some of the reported physical VIT experimentation studies appear to follow a portion of full scale VIT experimentation (i.e., a combination of the pendent drop method and the capillary rise technique). The physical VIT experimentation method in which the IFT measurements are made at varying pressures but with the same initial load of live oil and gas phases in the optical cell seems to be the most robust mechanistic procedure for experimentally studying the pressure dependence of IFT behaviors of complex CO2 + crude oil systems and thus determining the MMP using the VIT technique. The results presented here suggest that a basic parachor expression based on numerical VIT experimentation can reasonably follow the physical VIT experimentation in low IFT region, provided measured input data such as equilibrium phase densities and compositions are used in calculations.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Victor Torkiowei Biu ◽  
Shi-Yi Zheng

This paper presents the numerical density derivative approach (another phase of numerical welltesting) in which each fluid’s densities around the wellbore are measured and used to generate pressure equivalent for each phase using simplified pressure-density correlation, as well as new statistical derivative methods to determine each fluid phase’s permeabilities, and the average effective permeability for the system with a new empirical model. Also density related radial flow equations for each fluid phase are derived and semilog specialised plot of density versus Horner time is used to estimate k relative to each phase. Results from 2 examples of oil and gas condensate reservoirs show that the derivatives of the fluid phase pressure-densities equivalent display the same wellbore and reservoir fingerprint as the conventional bottom-hole pressure BPR method. It also indicates that the average effective kave ranges between 43 and 57 mD for scenarios (a) to (d) in Example 1.0 and 404 mD for scenarios (a) to (b) in Example 2.0 using the new fluid phase empirical model for K estimation. This is within the k value used in the simulation model and likewise that estimated from the conventional BPR method. Results also discovered that in all six scenarios investigated, the heavier fluid such as water and the weighted average pressure-density equivalent of all fluid gives exact effective k as the conventional BPR method. This approach provides an estimate of the possible fluid phase permeabilities and the % of each phase contribution to flow at a given point. Hence, at several dp' stabilisation points, the relative k can be generated.


2015 ◽  
Vol 2015 ◽  
pp. 1-28 ◽  
Author(s):  
Nelson Barros-Galvis ◽  
Pedro Villaseñor ◽  
Fernando Samaniego

Modeling of limestone reservoirs is traditionally developed applying tectonic fractures concepts or planar discontinuities and has been simulated dynamically without considering nonplanar discontinuities as sedimentary breccias, vugs, fault breccias, and impact breccias, assuming that all these nonplanar discontinuities are tectonic fractures, causing confusion and contradictions in reservoirs characterization. The differences in geometry and connectivity in each discontinuity affect fluid flow, generating the challenge to develop specific analytical models that describe quantitatively hydrodynamic behavior in breccias, vugs, and fractures, focusing on oil flow in limestone reservoirs. This paper demonstrates the differences between types of discontinuities that affect limestone reservoirs and recommends that all discontinuities should be included in simulation and static-dynamic characterization, because they impact fluid flow. To demonstrate these differences, different analytic models are developed. Findings of this work are based on observations of cores, outcrops, and tomography and are validated with field data. The explanations and mathematical modeling developed here could be used as diagnostic tools to predict fluid velocity and fluid flow in limestone reservoirs, improving the complex reservoirs static-dynamic characterization.


Sign in / Sign up

Export Citation Format

Share Document