Estimating Drainage-Area Pressure With Flow-After-Flow Testing

2012 ◽  
Vol 15 (05) ◽  
pp. 571-583 ◽  
Author(s):  
C.S.. S. Kabir ◽  
M.. Elgmati ◽  
Z.. Reza

Summary Estimating the average drainage-area pressure (pav) of individual wells is a cornerstone to any reservoir-management practice. Yet conventional methods do not always offer reliable solutions to this vexing problem. This study shows that transient flow-after-flow (FAF) testing offers an excellent opportunity to establish pav in a time-lapse mode, when conducted following operational shutdowns. Instrumented wells are natural candidates for FAF testing. Real-time surveillance offers the opportunity to perform rate-transient analysis that results in drainage volume and, consequently, pav. However, gathering quality rate data commensurate with pressure over a long producing period is fraught with uncertainty, which raises questions about the validity of the pav so obtained. In addition, continuous changes in drainage-boundary conditions pose modeling challenges with a given reservoir model. Therefore, the independent estimation of pav cannot be overemphasized. This paper presents a theroretical framework for transient FAF testing and also shows a pragmatic approach to handling pressure/rate data incoherence.

2019 ◽  
Vol 8 (4) ◽  
pp. 1508-1511

Rate-time decline curve analysis is a major technique which is mostly used in petroleum engineering. Many methods are used for the determination of the decrease in the production rate within a given period of time. The main disadvantage of Arp’s decline type curve analysis is that it is only used for boundary dominated flow period; it is not used for transient flow period. The analysis of the Fetkovich is to determine the log-log type curve for both the transient flow period (early time period or infinite) and boundary-dominated flow period (late time period). Arps developed the type curve which shows the production rate decline with time for the finite reservoir or late time period. The exponential or constant flow decline, hyperbolic decline, and harmonic decline according to the value of decline curve exponent (b) is given by Arps. After that Fetkovich improved on earlier work done by Arps in predicting decline production rate of wells over a given period of time. The main objective of this study was to plotting the rate transient analysis curve. I will plot the Fetkovich type curve (combined early and late times region). The graph will be plotted between the dimensionless decline flow rate (qDd) and the dimensionless decline time” (tDd). This will be the objective of the study.


2019 ◽  
Vol 59 (1) ◽  
pp. 289 ◽  
Author(s):  
A. Salmachi ◽  
J. Barkla

Permeability of coal seam gas (CSG) reservoirs is stress/desorption dependent and may change during the life of the reservoir. This study investigates permeability change with depletion in several CSG wells in the Fairview Field: a prolific reservoir in the Bowen Basin, Australia. High-resolution pressure gauges at surface provide an opportunity to conduct time-lapse pressure transient analysis (PTA) on the wells that have multiple shut-ins. Pressure build-up tests can be replicated by calculating bottom-hole pressure when surface pressure (tubing and/or annulus) is recorded at high-resolution during any shut-in event. This eliminates the need to perform multiple well tests, which are time consuming and costly to run. The production history of 100 CSG wells was examined to find suitable candidates to perform time-lapse PTA. This was used to investigate how Bandanna Coal permeability changes with depletion. Three wells with high-quality shut-ins were identified and analysed to calculate effective permeability to gas and average reservoir pressure. The results indicate that coal permeability can enhance up to one order of magnitude during the life of a CSG well in the Fairview Field, and this can significantly improve production performance. These wells, located in a depleted area of the field, show rapid increase in permeability with decline in average reservoir pressure. The integration of rate transient analysis with the results of time-lapse PTA for one of the study wells reveals that the functional form of permeability increase is exponential in the study area, and a permeability modulus of –0.00678 psia–1 was obtained.


Author(s):  
R.R. Urazov ◽  
◽  
A.Ya. Davletbaev ◽  
A.I. Sinitskiy ◽  
A.Kh. Nuriev ◽  
...  

2008 ◽  
Vol 11 (06) ◽  
pp. 1071-1081 ◽  
Author(s):  
Amy Whitaker ◽  
C. Shah Kabir ◽  
Wayne Narr

Summary The extent to which fractures affect fluid pathways is a vital component of understanding and modeling fluid flow in any reservoir. We examined the Wafra Ratawi grainstone for which production extending for 50 years, including recent horizontal drilling, has provided some clues about fractures, but their exact locations, intensity, and overall effect have been elusive. In this study, we find that a limited number of total fractures affect production characteristics of the Ratawi reservoir. Although fractures occur throughout the Wafra field, fracture-influenced reservoir behavior is confined to the periphery of the field where the matrix permeability is low. This work suggests that for the largest part of the field, explicit fractures are not necessary in the next-generation Earth and flow-simulation models. The geologic fracture assessment included seismic fault mapping and fracture interpretation of image logs and cores. Fracture trends are in the northeast and southwest quadrants, and fractures are mineralized toward the south and west of the field. Pressure-falloff tests on some peripheral injectors indicate partial barriers, and most of these wells lie on seismic-scale faults in the reservoir, suggesting partial sealing. A few wells show fractured-reservoir production characteristics, and rate-transient analysis on a few producers indicates localized dual-porosity behavior. Producers proximal to dual-porosity wells display single-porosity behavior, however, to attest to the notion of localized fracture response. The spatially restricted fracture-flow characteristics appear to correlate with fracture or vug zones in a low-permeability reservoir. Presence of fracture-flow behavior was tested by constructing the so-called flow-capacity index (FCI), the ratio of khwell (well test-derived value) to khmatrix (core-derived property). Data from 80 wells showed khmatrix to be consistently higher than khwell, a relationship that suggests insignificant fracture production in these wells. Introduction The Wafra field is in the Partitioned Neutral Zone (PNZ) between Kuwait and Saudi Arabia, as shown in Fig. 1. The field has been producing since the 1950s and has seen renewed drilling activity since the late 1990s, including horizontal drilling and implementation of peripheral water injection (Davis and Habib 1999). The Lower Cretaceous Ratawi formation contains the most reserves of the producing intervals at Wafra. The Ratawi oolite (a misnomer--it is a grainstone) reservoir has variable porosity (5 to 35%) and permeability that ranges from tens to hundreds of md (Longacre and Ginger 1988). The main Wafra structure is a gentle (i.e., interlimb angle >170°), doubly plunging anticline trending north-northwest to south-southeast, which culminates near its northern end. The East Wafra spur is a north-trending branch that extends from the center of the main Wafra structure. As seen in Fig. 1, relief on the Main Wafra structure exceeds that on East Wafra. The Ratawi oolite in the Wafra field has been studied at length, and various authors have reported geologic and engineering elements, leading to reservoir characterization and understanding of reservoir performance. Geologic studies are those of Waite et al. (2000) and Sibley et al. (1997). In contrast, Davis and Habib (1999) presented implementation of peripheral water injection, whereas Chawathé et al. (2006) discussed realignment of injection pattern owing to lack of pressure support in the reservoir interior. Previous studies considered the reservoir to behave like a single-porosity system. But recent image-log fracture interpretations indicate high fracture densities, suggesting that the implementation of a dual-porosity model may be necessary because the high impact of fractures during field development has been recognized in some Middle East reservoirs for more than 50 years (Daniel 1954). Static and dynamic data are required to characterize fracture reservoir behavior accurately (Narr et al. 2006). Geologic description of the fracture system, by use of cores, borehole images, seismic data, and well logs, does not in itself determine whether fractures affect reservoir behavior. While seismic and some image logs were available to locate fractures in the Wafra Ratawi reservoir, no dynamic testing with the specific objective of understanding fracture impact has occurred. So, to determine whether fractures influence oil productivity significantly, we used diagnostic analyses of production data and well tests of available injectors. The assessment of fracture effects in the Ratawi reservoir will be used to guide the next generation of geologic and flow-simulation models. Dynamic data involving pressure and rate have the potential to reveal the influence of open fractures in production performance. Unfortunately, pressure-transient testing on single wells does not always provide conclusive evidence about the presence of fractures with the characteristic dual-porosity dip on the pressure-derivative signature (Bourdet et al. 1989). That is because a correct mixture of matrix/fracture storativity must be present for the characteristic signature to appear (Serra et al. 1983). In practice, interference testing (Beliveau 1989) between wells appears to provide more-definitive clues about interwell connectivity, leading to inference about fractures. In contrast to pressure-transient testing, rate-transient analysis offers the potential to provide the same information without dedicated testing. In this field, all wells are currently on submersible pumps. Consequently, the pump-intake pressure and measured rate provided the necessary data for pressure/rate convolution or rate-transient analysis. We provide the Ratawi-reservoir case study primarily as an example of the integration of diverse geologic and engineering data to develop an assessment of fracture influence on reservoir behavior. It illustrates the use of production-data diagnostic tests to determine fracture influence in the absence of targeted fracture-analysis testing. The workflow can be applied to similar static/dynamic problems, such as fault-transmissivity determination. Secondly, this analysis illustrates the process of deciding that fractures, although present throughout the reservoir, may not lead to widespread fractured-reservoir characteristics (e.g., Allan and Sun 2003).


Sign in / Sign up

Export Citation Format

Share Document