Evaluation of the Clearwater Formation Caprock for a Proposed, Low-Pressure, Steam-Assisted Gravity Drainage Pilot Project

Author(s):  
Michelle Uwiera-Gartner ◽  
Michael Robert Carlson ◽  
Claes T.S. Palmgren
1991 ◽  
Author(s):  
A.L. Siu ◽  
L.X. Nghiem ◽  
S.D. Gittins ◽  
B.I. Nzekwu ◽  
D.A. Redford

1969 ◽  
Vol 11 (2) ◽  
pp. 189-205 ◽  
Author(s):  
E. A. Bruges ◽  
M. R. Gibson

Equations specifying the dynamic viscosity of compressed water and steam are presented. In the temperature range 0-100cC the location of the inversion locus (mu) is defined for the first time with some precision. The low pressure steam results are re-correlated and a higher inversion temperature is indicated than that previously accepted. From 100 to 600°C values of viscosity are derived up to 3·5 kilobar and between 600 and 1500°C up to 1 kilobar. All the original observations in the gaseous phase have been corrected to a consistent set of densities and deviation plots for all the new correlations are given. Although the equations give values within the tolerances of the International Skeleton Table it is clear that the range and tolerances of the latter could with some advantage be revised to give twice the existing temperature range and over 10 times the existing pressure range at low temperatures. A list of the observations used and their deviations from the correlating equations is available as a separate publication.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Jingyi Wang ◽  
Ian Gates

To extract viscous bitumen from oil sands reservoirs, steam is injected into the formation to lower the bitumen’s viscosity enabling sufficient mobility for its production to the surface. Steam-assisted gravity drainage (SAGD) is the preferred process for Athabasca oil sands reservoirs but its performance suffers in heterogeneous reservoirs leading to an elevated steam-to-oil ratio (SOR) above that which would be observed in a clean oil sands reservoir. This implies that the SOR could be used as a signature to understand the nature of heterogeneities or other features in reservoirs. In the research reported here, the use of the SOR as a signal to provide information on the heterogeneity of the reservoir is explored. The analysis conducted on prototypical reservoirs reveals that the instantaneous SOR (iSOR) can be used to identify reservoir features. The results show that the iSOR profile exhibits specific signatures that can be used to identify when the steam chamber reaches the top of the formation, a lean zone, a top gas zone, and shale layers.


2021 ◽  
Vol 1096 (1) ◽  
pp. 012097
Author(s):  
A M Kongkong ◽  
H Setiawan ◽  
J Miftahul ◽  
A R Laksana ◽  
I Djunaedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document