A Comparison of Methods for the Representation of Three-Phase Relative Permeability Data

Author(s):  
R. Parmeswar ◽  
N.L. Maerefat
1966 ◽  
Vol 6 (03) ◽  
pp. 199-205 ◽  
Author(s):  
A.M. Sarem

Abstract For the performance prediction of multiphase oil recovery processes such as steam stimulation, there is an acute need for three-phase relative permeability data. No fast and simple experimental technique, such as the unsteady-state method proposed by Welge for two-phase flow, is available for the three-phase flow. In this paper, an unsteady-state method is presented for obtaining three-phase relative permeability data; this method is as fast and easy as Welge's method for two-phase flow. Analytical expressions are derived by extension of the Buckley-Leverett theory to three-phase flow to express the saturation at the outflow face for all three phases in terms of the known parameters. It is assumed that the fractional flow and relative permeability of each phase are a function of the saturation of that phase. Other simplifying assumptions made include the neglect of capillary and gravity effects. The effect of saturation history upon relative permeability is acknowledged and attainment of similar saturation history in laboratory and field is recommended. The required experimental work and computations are simple to perform. The test core is presaturated with oil and water, then subjected to gas drive. During the test, required data are the rates of oil, water, and gas production, together with pressure drop and temperature. The ordinary gas-oil unsteady-state relative permeability apparatus can be readily modified to measure the required data. The proposed technique was applied to samples of a Berea and a reservoir core. The effect of saturation history upon relative permeability was studied on one Berea core. It was found that increase in initial water saturation has a similar effect upon three-phase relative permeability as it does in two-phase flow. Introduction In the light of increasing demand for three-phase, relative permeability data for predicting the performance of thermal and other multiphase-flow recovery processes, a simple and accurate method of experimental determination of such data is extremely desirable. Leverett and Lewis1 described the simultaneous flow method of obtaining three-phase relative permeability data. However, Caudle et al.2 reported that this method is very time consuming and cumbersome. Corey3 proposed calculating the three-phase relative permeability from measured krg data. Corey's theory is based on simplified capillary pressure curves,4 assuming a straight line relationship between 1/Pc2 and saturation. Also, Corey's method assumes a preferentially water-wet system. The simplest and quickest method of obtaining three-phase relative permeability data is the unsteady-state method where, for instance, oil and water are displaced by gas. However, in such a test the correlation of average saturation with relative permeability does not give a valid relationship because the rates of oil, water and gas flow in the sample change continuously from the upstream to downstream end. This difficulty in calculating valid relationships was solved by Welge for two-phase flow by deriving an expression from Buckley and Leverett frontal advance equations.5,6 In this paper, relations are established to determine the outflow face saturation and relative permeability to all phases in a three-phase flow displacement experiment. Proposed Method The fundamentals established by Buckley and Leverett5 for two-phase flow were extended to three-phase flow and used as a basis for the derivation of saturation equations. This approach is comparable to Welge's6 use of Buckley and Leverett theory in arriving at expressions to determine the outflow face saturation of the displacing fluid in a two-phase flow system.


2021 ◽  
Author(s):  
Latifa Obaid Alnuaimi ◽  
Mehran Sohrabi ◽  
Shokoufeh Aghabozorgi ◽  
Ahmed Alshmakhy

Abstract Simulation of Water-Alternating-Gas (WAG) Experiments require precise estimation of hysteresis phenomenon in three-phase relative permeability. Most of the research available in the literature are focused on experiments performed on sandstone rocks and the study of carbonate rocks has attracted less attention. In this paper, a recently published hysteresis model by Heriot-Watt University (HWU) was used for simulation of WAG experiments conducted on mixed-wet homogenous carbonate rock. In this study, we simulated immiscible WAG experiments, which were performed under reservoir conditions on mixed-wet carbonate reservoir rock extracted from Abu Dhabi field by using real reservoir fluids. Experiments are performed with different injection scenarios and at high IFT conditions. Then, the results of the coreflood experiments were history matched using 3RPSim to generate two-phase and three-phase relative permeability data. Finally, the hysteresis model suggested by Heriot-Watt University was used for the estimation of hysteresis in relative permeability data. The performance of the model was compared with the experimental data from sandstones to evaluate the impact of heterogeneity on hysteresis phenomenon. It was shown that the available correlations for estimation of three-phase oil relative permeability fail to simulate the oil production during WAG experiments, while the modified Stone model suggested by HWU provided a better prediction. Overall, HWU hysteresis model improved the match for trapped gas saturation and pressure drop. The results show that the hysteresis effect is less dominant in the carbonate rock compared to the sandstone rock. The tracer test results show that the carbonate rock is more homogenous compared to sandstone rock. Therefore, the conclusion is that the hysteresis effect is negligible in homogenous systems.


1967 ◽  
Vol 7 (03) ◽  
pp. 235-242 ◽  
Author(s):  
D.N. Saraf ◽  
I. Fatt

Abstract A method is described for measuring two- and three-phase relative permeabilities in sandstones or sand packs using a nuclear magnetic resonance (NMR) technique to determine fluid saturations Two- and three-phase relative permeabilities have been determined on Boise sandstone using the NMR technique of saturation measurement. Three- phase relative permeability to water was found to depend only on the water saturation, whereas three-phase permeability to oil depended on both the water and oil saturations. Relative permeability to gas in three-phase flow was found to depend only on the total liquid saturation. Introduction Three-phase relative permeabilities are extremely useful in calculating field performance for reservoirs being produced by simultaneous water and gas drives. Three-phase relative permeability data are also needed for analyzing solution gas-drive reservoirs which are partially depleted and are being produced by water drive. Some thermal recovery processes involve three-phase flow which require three-phase relative permeability data for predicting reservoir-behavior. Unfortunately three-phase relative permeability measurements have rarely been made. Also, because of the scarcity of three-phase data, it has not been possible to date to relate other measured rock characteristics to the relative permeabilities with a great certainty. Leverett and Lewis, Reid and Snells have reported three-phase relative permeability data on unconsolidated sands. Leverett and Lewis used ring electrodes spaced along the length of the sand sample to -measure the resistivity of the sample which was assumed to be monotonically related to brine saturation. Gas saturation was determined from pressure-volume measurements. Oil saturation was obtained by material balance on the cell containing the sand sample. This method is involved and time consuming. Another difficulty arises from the fact that the resistivity of the sand is a function not only of saturation of brine but also of the distribution and saturation history of the brine in the pore spaces. Reid used a gamma ray absorption technique for measuring liquid saturation. This method has the disadvantage that total liquid saturation rather than oil or brine saturation is all that can be measured and still another method is required to determine the saturations of individual components. Snells used a neutron bombardment method which also required a separate determination of the individual component saturations. Caudle et al. measured three-phase relative permeability on consolidated sandstones using vacuum distillation for determining fluid saturations. Distillation after each reading makes this technique very lengthy and time consuming. Corey et al and Naar and Wygal measured three-phase relative permeability on sandstones by the capillary- pressure method. Semipermeable diaphragm assemblies were used at each end of the core specimen to keep the water base in the core. Gravimetric methods were used to determine fluid saturations. Sarem recently repeated an unsteady-state method for measuring three-phase relative permeability on sandstones. This method is an extension of Weige's methods for measuring two-phase relative permeability. Although Sarem's method is simple and comparatively fast, the assumptions involved may oversimplify the problem. Sarem's assumption, that in all rocks relative permeability to each fluid will depend only on the saturation of that fluid, seems to be rather unrealistic. Neglecting capillary effects at the end of the core is also a weak assumption Donaldson and Deans measured three-phase relative permeability using a method similar to Sarem's. SPEJ P. 235ˆ


1976 ◽  
Author(s):  
James K. Dietrich ◽  
Paul L. Bondor

2021 ◽  
Author(s):  
Carlos Esteban Alfonso ◽  
Frédérique Fournier ◽  
Victor Alcobia

Abstract The determination of the petrophysical rock-types often lacks the inclusion of measured multiphase flow properties as the relative permeability curves. This is either the consequence of a limited number of SCAL relative permeability experiments, or due to the difficulty of linking the relative permeability characteristics to standard rock-types stemming from porosity, permeability and capillary pressure. However, as soon as the number of relative permeability curves is significant, they can be processed under the machine learning methodology stated by this paper. The process leads to an automatic definition of relative permeability based rock-types, from a precise and objective characterization of the curve shapes, which would not be achieved with a manual process. It improves the characterization of petrophysical rock-types, prior to their use in static and dynamic modeling. The machine learning approach analyzes the shapes of curves for their automatic classification. It develops a pattern recognition process combining the use of principal component analysis with a non-supervised clustering scheme. Before this, the set of relative permeability curves are pre-processed (normalization with the integration of irreducible water and residual oil saturations for the SCAL relative permeability samples from an imbibition experiment) and integrated under fractional flow curves. Fractional flow curves proved to be an effective way to unify the relative permeability of the two fluid phases, in a unique curve that characterizes the specific poral efficiency displacement of this rock sample. The methodology has been tested in a real data set from a carbonate reservoir having a significant number of relative permeability curves available for the study, in addition to capillary pressure, porosity and permeability data. The results evidenced the successful grouping of the relative permeability samples, according to their fractional flow curves, which allowed the classification of the rocks from poor to best displacement efficiency. This demonstrates the feasibility of the machine learning process for defining automatically rock-types from relative permeability data. The fractional flow rock-types were compared to rock-types obtained from capillary pressure analysis. The results indicated a lack of correspondence between the two series of rock-types, which testifies the additional information brought by the relative permeability data in a rock-typing study. Our results also expose the importance of having good quality SCAL experiments, with an accurate characterization of the saturation end-points, which are used for the normalization of the curves, and a consistent sampling for both capillary pressure and relative permeability measurements.


2018 ◽  
Vol 54 (2) ◽  
pp. 1109-1126 ◽  
Author(s):  
Wei Jia ◽  
Brian McPherson ◽  
Feng Pan ◽  
Zhenxue Dai ◽  
Nathan Moodie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document