A Complete Petrophysical Evaluation Method for Tight Formations From Only Drill Cuttings in the Absence of Well Logs

Author(s):  
Camilo Ernesto Ortega ◽  
Roberto Aguilera
SPE Journal ◽  
2013 ◽  
Vol 19 (04) ◽  
pp. 636-647 ◽  
Author(s):  
Camilo Ortega ◽  
Roberto Aguilera

Summary The amount of tight-formation petrophysical work conducted at present in horizontal wells and the examples available in the literature are limited to only those wells that have complete data sets. This is very important. But the reality is that in the vast majority of horizontal wells, the data required for detailed analyses are quite scarce. Petrophysical evaluation in the absence of well logs and cores can now be considered owing to the possibility of measuring both the permeability and porosity of drill cuttings. This is essential because the application of the successive correlations used throughout the paper is based on porosity and permeability data. To try to alleviate the data-scarcity problem, a new method is presented for complete petrophysical evaluation derived from information that can be extracted from drill cuttings in the absence of well logs. The cuttings data include porosity and permeability. The gamma ray and any other logs, if available, can help support the interpretation. However, the methodology is built strictly on data extracted from cuttings and can be used for horizontal, slanted, and vertical wells. The method is illustrated with the use of a tight gas formation in the Deep basin of the western Canada sedimentary basin (WCSB). However, it also has direct application in the case of liquids. The method is shown to be a powerful petrophysical tool because it allows quantitative evaluation of water saturation, pore-throat aperture, capillary pressure, flow units, porosity (or cementation) exponent m, true-formation resistivity, and distance to a water table (if present). Also, the method allows one to distinguish the contributions from viscous and diffusion-like flow in tight gas formations. The method further allows the construction of Pickett plots without previous availability of well logs, and it assumes the existence of intervals at irreducible water saturation, which is the case of many tight formations currently under exploitation. It is concluded that drill cuttings are a powerful direct source of information that allows complete and practical evaluation of tight reservoirs in which well logs are scarce. The uniqueness and practicality of this quantitative procedure originate from the fact that it starts only from the laboratory analysis of drill cuttings—something that has not been performed in the past.


2007 ◽  
Vol 10 (06) ◽  
pp. 711-729 ◽  
Author(s):  
Paul Francis Worthington

Summary A user-friendly type chart has been constructed as an aid to the evaluation of water saturation from well logs. It provides a basis for the inter-reservoir comparison of electrical character in terms of adherence to, or departures from, Archie conditions in the presence of significant shaliness and/or low formation-water salinity. Therefore, it constitutes an analog facility. The deliverables include reservoir classification to guide well-log analysis, a protocol for optimizing the acquisition of special core data in support of log analysis, and reservoir characterization in terms of an (analog) porosity exponent and saturation exponent. The type chart describes a continuum of electrical behavior for both water and hydrocarbon zones. This is important because some reservoir rocks can conform to Archie conditions in the fully water-saturated state, but show pronounced departures from Archie conditions in the partially water-saturated state. In this respect, the chart is an extension of earlier approaches that were restricted to the water zone. This extension is achieved by adopting a generalized geometric factor—the ratio of water conductivity to formation conductivity—regardless of the degree of hydrocarbon saturation. The type chart relates a normalized form of this geometric factor to formation-water conductivity, a "shale" conductivity term, and (irreducible) water saturation. The chart has been validated using core data from comprehensively studied reservoirs. A workflow details the application of the type chart to core and/or log data. The analog role of the chart is illustrated for reservoir units that show different levels of non-Archie effects. The application of the method should take rock types, scale effects, the degree of core sampling, and net reservoir criteria into account. The principal benefit is a reduced uncertainty in the choice of a procedure for the petrophysical evaluation of water saturation, especially at an early stage in the appraisal/development process, when adequate characterizing data may not be available. Introduction One of the ever-present problems in petrophysics is how to carry out a meaningful evaluation of well logs in situations where characterizing information from quality-assured core analysis is either unavailable or is insufficient to satisfactorily support the log interpretation. This problem is especially pertinent at an early stage in the life of a field, when reservoir data are relatively sparse. Data shortfalls could be mitigated if there was a means of identifying petrophysical analogs of reservoir character, so that the broader experience of the hydrocarbon industry could be utilized in constructing reservoir models and thence be brought to bear on current appraisal and development decisions. Here, a principal requirement calls for type charts of petrophysical character, on which data from different reservoirs can be plotted and compared, as a basis for aligning approaches to future data acquisition and interpretation. This need manifests itself strongly in the petrophysical evaluation of water saturation, a process that traditionally uses the electrical properties of a reservoir rock to deliver key building blocks for an integrated reservoir model. The solution to this problem calls for an analog facility through which the electrical character of a subject reservoir can be compared with others that have been more comprehensively studied. In this way, the degree of confidence in log-derived water saturation might be reinforced. At the limit, the log analyst needs a reference basis for recourse to capillary pressure data in cases where the well-log evaluation of water saturation turns out to be prohibitively uncertain.


2017 ◽  
Author(s):  
Ghadeer Al-Sulami ◽  
Mohammed Boudjatit ◽  
Mohammed Al-Duhailan ◽  
Salvatore Di Simone

2013 ◽  
Vol 1 (1) ◽  
pp. T113-T123 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Reliable estimates of petrophysical and compositional properties of organic shale are critical for detecting perforation zones or candidates for hydro-fracturing jobs. Current methods for in situ formation evaluation of organic shale largely rely on qualitative responses and empirical formulas. Even core measurements can be inconsistent and inaccurate when evaluating clay minerals and other grain constituents. We implement a recently introduced inversion-based method for organic-shale evaluation from conventional well logs. The objective is to estimate total porosity, total organic carbon (TOC), and volumetric/weight concentrations of mineral/fluid constituents. After detecting bed boundaries, the first step of the method is to perform separate inversion of individual well logs to estimate bed physical properties such as density, neutron migration length, electrical conductivity, photoelectric factor (PEF), and thorium, uranium , and potassium volumetric/weight concentrations. Next, a multilayer petrophysical model specific to organic shale is constructed with an initial guess obtained from conventional well-log interpretation or X-ray diffraction data; bed physical properties are calculated with the initial layer-by-layer values. Final estimates of organic shale petrophysical and compositional properties are obtained by progressively minimizing the difference between calculated and measured bed properties. A unique advantage of this method is the correction of shoulder-bed effects on well logs, which are prevalent in shale-gas plays. Another advantage is the explicit calculation of accurate well-log responses for specific petrophysical, mineral, fluid, and kerogen properties based on chemical formulas and volumetric concentrations of minerals/kerogen and fluid constituents. Examples are described of the successful application of the new organic-shale evaluation method in the Haynesville shale-gas formation. This formation includes complex solid compositions and thin beds where rapid depth variations of mineral/fluid constituents are commonplace. Comparison of estimates for total porosity, total water saturation, and TOC obtained with (a) commercial software for multimineral analysis, (b) our organic-shale evaluation method, and (c) core/X-ray diffraction measurements indicates a significant improvement in estimates of total porosity and water saturation yielded by our interpretation method. The estimated TOC is also in agreement with core laboratory measurements.


2015 ◽  
Author(s):  
Vikas Jain ◽  
Kais Gzara ◽  
Gennady Makarychev ◽  
Chanh Cao Minh ◽  
Denis Heliot

Sign in / Sign up

Export Citation Format

Share Document