Inversion-based method for estimating total organic carbon and porosity and for diagnosing mineral constituents from multiple well logs in shale-gas formations

2013 ◽  
Vol 1 (1) ◽  
pp. T113-T123 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Reliable estimates of petrophysical and compositional properties of organic shale are critical for detecting perforation zones or candidates for hydro-fracturing jobs. Current methods for in situ formation evaluation of organic shale largely rely on qualitative responses and empirical formulas. Even core measurements can be inconsistent and inaccurate when evaluating clay minerals and other grain constituents. We implement a recently introduced inversion-based method for organic-shale evaluation from conventional well logs. The objective is to estimate total porosity, total organic carbon (TOC), and volumetric/weight concentrations of mineral/fluid constituents. After detecting bed boundaries, the first step of the method is to perform separate inversion of individual well logs to estimate bed physical properties such as density, neutron migration length, electrical conductivity, photoelectric factor (PEF), and thorium, uranium , and potassium volumetric/weight concentrations. Next, a multilayer petrophysical model specific to organic shale is constructed with an initial guess obtained from conventional well-log interpretation or X-ray diffraction data; bed physical properties are calculated with the initial layer-by-layer values. Final estimates of organic shale petrophysical and compositional properties are obtained by progressively minimizing the difference between calculated and measured bed properties. A unique advantage of this method is the correction of shoulder-bed effects on well logs, which are prevalent in shale-gas plays. Another advantage is the explicit calculation of accurate well-log responses for specific petrophysical, mineral, fluid, and kerogen properties based on chemical formulas and volumetric concentrations of minerals/kerogen and fluid constituents. Examples are described of the successful application of the new organic-shale evaluation method in the Haynesville shale-gas formation. This formation includes complex solid compositions and thin beds where rapid depth variations of mineral/fluid constituents are commonplace. Comparison of estimates for total porosity, total water saturation, and TOC obtained with (a) commercial software for multimineral analysis, (b) our organic-shale evaluation method, and (c) core/X-ray diffraction measurements indicates a significant improvement in estimates of total porosity and water saturation yielded by our interpretation method. The estimated TOC is also in agreement with core laboratory measurements.

2014 ◽  
Vol 2 (3) ◽  
pp. T129-T142 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Petrophysical interpretation of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds and spatially complex lithology; conventional interpretation techniques often fail in such cases. Recently introduced methods for thin-bed interpretation enable corrections for shoulder-bed effects on well logs but remain sensitive to incorrectly picked bed boundaries. We introduce a new inversion-based method to detect bed boundaries and to estimate petrophysical and compositional properties of multilayer formations from conventional well logs in the presence of thin beds, complex lithology/fluids, and kerogen. Bed boundaries and bed properties are updated in two serial inversion loops. Numerical simulation of well logs within both inversion loops explicitly takes into account differences in the volume of investigation of all well logs involved in the estimation, thereby enabling corrections for shoulder-bed effects. The successful application of the new interpretation method is documented with synthetic cases and field data acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical/compositional properties obtained with the new interpretation method were compared to those obtained with (1) nonlinear inversion of well logs with inaccurate bed boundaries, (2) depth-by-depth inversion of well logs, and (3) core/x-ray diffraction measurements. Results indicated that the new method improves the estimation of porosity of thin beds by more than 200% in the carbonate field example and by more than 40% in the shale-gas example, compared to depth-by-depth interpretation results obtained with commercial software. This improvement in the assessment of petrophysical/compositional properties reduces uncertainty in hydrocarbon reserves and aids in the selection of hydraulic fracture locations in organic shale.


2007 ◽  
Vol 10 (06) ◽  
pp. 711-729 ◽  
Author(s):  
Paul Francis Worthington

Summary A user-friendly type chart has been constructed as an aid to the evaluation of water saturation from well logs. It provides a basis for the inter-reservoir comparison of electrical character in terms of adherence to, or departures from, Archie conditions in the presence of significant shaliness and/or low formation-water salinity. Therefore, it constitutes an analog facility. The deliverables include reservoir classification to guide well-log analysis, a protocol for optimizing the acquisition of special core data in support of log analysis, and reservoir characterization in terms of an (analog) porosity exponent and saturation exponent. The type chart describes a continuum of electrical behavior for both water and hydrocarbon zones. This is important because some reservoir rocks can conform to Archie conditions in the fully water-saturated state, but show pronounced departures from Archie conditions in the partially water-saturated state. In this respect, the chart is an extension of earlier approaches that were restricted to the water zone. This extension is achieved by adopting a generalized geometric factor—the ratio of water conductivity to formation conductivity—regardless of the degree of hydrocarbon saturation. The type chart relates a normalized form of this geometric factor to formation-water conductivity, a "shale" conductivity term, and (irreducible) water saturation. The chart has been validated using core data from comprehensively studied reservoirs. A workflow details the application of the type chart to core and/or log data. The analog role of the chart is illustrated for reservoir units that show different levels of non-Archie effects. The application of the method should take rock types, scale effects, the degree of core sampling, and net reservoir criteria into account. The principal benefit is a reduced uncertainty in the choice of a procedure for the petrophysical evaluation of water saturation, especially at an early stage in the appraisal/development process, when adequate characterizing data may not be available. Introduction One of the ever-present problems in petrophysics is how to carry out a meaningful evaluation of well logs in situations where characterizing information from quality-assured core analysis is either unavailable or is insufficient to satisfactorily support the log interpretation. This problem is especially pertinent at an early stage in the life of a field, when reservoir data are relatively sparse. Data shortfalls could be mitigated if there was a means of identifying petrophysical analogs of reservoir character, so that the broader experience of the hydrocarbon industry could be utilized in constructing reservoir models and thence be brought to bear on current appraisal and development decisions. Here, a principal requirement calls for type charts of petrophysical character, on which data from different reservoirs can be plotted and compared, as a basis for aligning approaches to future data acquisition and interpretation. This need manifests itself strongly in the petrophysical evaluation of water saturation, a process that traditionally uses the electrical properties of a reservoir rock to deliver key building blocks for an integrated reservoir model. The solution to this problem calls for an analog facility through which the electrical character of a subject reservoir can be compared with others that have been more comprehensively studied. In this way, the degree of confidence in log-derived water saturation might be reinforced. At the limit, the log analyst needs a reference basis for recourse to capillary pressure data in cases where the well-log evaluation of water saturation turns out to be prohibitively uncertain.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 388 ◽  
Author(s):  
Yapei Ye ◽  
Shuheng Tang ◽  
Zhaodong Xi

The brittleness index (BI) is a key parameter used to identify the desirable fracturing intervals of shale gas reservoirs. Its correlation with fracability is still controversial. There have been a variety of methods proposed that can estimate BI. The brittleness evaluation method based on stress-strain curves according to the energy-balanced law is the most suitable and reliable in this study. Triaxial compression test, optical microscopy and scanning electron microscopy (SEM) observation, and X-ray diffraction analysis (XRD) were performed on nine drill core samples from well SY3 located in the peripheral regions of Sichuan Basin, China. These tests further evaluated several commonly used methods (brittleness indices based on rock elastic parameters, rock mineral compositions) and determined the relationship between brittleness, rock elastic parameters, and the content of minerals. The results obtained indicate that for sedimentary rocks, a higher Young’s modulus reduces the brittleness of rock, and Poisson’s ratio weakly correlates with brittleness. Excessive amounts of quartz or carbonate minerals can increase the cohesiveness of rock, leading to poor brittleness. Furthermore, the most suitable fracturing layers possess a high brittleness index and low minimum horizontal stress.


2017 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Godwin Aigbadon ◽  
A.U Okoro ◽  
Chuku Una ◽  
Ocheli Azuka

The 3-D depositional environment was built using seismic data. The depositional facies was used to locate channels with highly theif zones and distribution of various sedimentary facies. The integration core data and the gamma ray log trend from the wells within the studied interval with right boxcar/right bow-shape indicate muddy tidal flat to mixed tidal flat environments. The bell–shaped from the well logs with the core data indicate delta front with mouth bar, the blocky box- car trend from the well logs with the core data indicate tidal point bar with tidal channel fill. The integration of seismic to well log tie display a good tie in the wells across the field. The attribute map from velocity analysis revealed the presence of hydrocarbons in the identified sands (A, B, C, D1, D2, D4, D5). The major faults F1, F2, F3 and F4 with good sealing capacity are responsible for hydrocarbon accumulation in the field. Detailed petro physical analysis of well log data showed that the studied interval are characterized by sand-shale inter-beds. Eight reservoirs were mapped at depth intervals of 2886m to 3533m with their thicknesses ranging from 12m to 407m. Also the Analysis of the petrophysical results showed that porosity of the reservoirs range from 14% to 28 %; permeability range from 245.70 md to 454.7md; water saturation values from 21.65% to 54.50% and hydrocarbon saturation values from 45.50% to 78.50 %. The by-passed hydrocarbons were identified and estimated in low resistivity pay sands D1, D2 at depth of 2884m – 2940m, sand D5 at depth of 3114m – 3126m respectively. The model serve as a basis for establishing facies model in the field.


2013 ◽  
pp. 151-154
Author(s):  
M. Smirny ◽  
M. Epishev

Successful problem solving design and optimization techniques hydrocarbon largely depends on the mineralogical composition of reservoir rocks. It mineralogical composition directly determines the applicability of certain methods of treatment reagent wells are needed, such as shale gas. In this article we have shown excellence and effectiveness of the X-ray diffraction analysis in combination with elemental analysis for problems of geological services.   


Author(s):  
San San Htwe

This In the research paper analyses structural, morphological, compositional properties, optical properties and energy band gap of ZnO nanoparticle synthesized using zinc acetate dehydrate and NaOH using precipitation method reported. The synthesized nanoparticles analyze using X-Ray Diffraction (XRD) and scanning electron microscopy (SEM), and UV- Vis Spectroscopy. Synthesized nanoparticles can be utilized as building materials in fabrication of various personal care products and optoelectronic devices including solar cells, LED’s etc.


2020 ◽  
Author(s):  
Ilaria Piccoli ◽  
Pozza Sara ◽  
Carlo Camarotto ◽  
Andrea Squartini ◽  
Giacomo Guerrini ◽  
...  

<p>Hydrogels (HGs) are conventionally defined as a natural or synthetic polymeric 3D networks with high hygroscopicity and water-swelling properties. Over the decades, HGs have been widely utilized in various fields of cosmetics, food additives, tissue engineering, drug delivery, and pharmaceuticals. Only recently HGs have been studied also for agronomic purpose. Indeed, their unique physical properties, including their porosity and swellability, make them ideal platforms for water and nutrient delivering. The aim of this study was to investigate the potentialities of two HGs, one formed by polyacrylamide and one by cellulose added with clay and humic acids, for improving soil porosity of three soil types (sandy “SD”, silty “SL” and clay “CL”). Soil pore network was characterized with X-ray computed microtomography (µCT) at 50 µm resolution and subsequent image analysis measuring  total porosity (TP), pore size distribution (PSD), mean diameter (MD), connectivity density and degree of anisotropy. Soil samples were at first saturated and then dried trough freezing and drying cycles with acetone at -80°c.</p><p>Preliminary results showed that at water saturation HG increased TP of four- and two-fold, respectively for SL and CL soil, MD of 40 (SD), 519 (SL) and 164 µm (CL) while no effects were found on other pore architecture indices (e.g., connectivity or anisotropy). The PSD analysis highlighted that HG increased the macroporosity fraction (e.g., pore > 0.8 mm) only in SL (+36%) and CL (+11%) while the other pore classes were not affected. Present study demonstrated that in fine-textured soils at high water content, HG might be a valuable tool to increase not simply the TP but, in particular, the macroporosity fraction which may play a key role in soil functioning and ecosystem services. Future research will investigate the HG performances under dynamic soil moisture conditions on water holding capacity and hydraulic conductivity (Research supported by Fondazione CARIPARO, InnoGel, Progetti Eccellenza 2017).</p>


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2772
Author(s):  
Hitoshi Soyama ◽  
Chieko Kuji ◽  
Tsunemoto Kuriyagawa ◽  
Christopher R. Chighizola ◽  
Michael R. Hill

As the fatigue strength of metallic components may be affected by residual stress variation at small length scales, an evaluation method for studying residual stress at sub-mm scale is needed. The sin2ψ method using X-ray diffraction (XRD) is a common method to measure residual stress. However, this method has a lower limit on length scale. In the present study, a method using at a 2D XRD detector with ω-oscillation is proposed, and the measured residual stress obtained by the 2D method is compared to results obtained from the sin2ψ method and the slitting method. The results show that the 2D method can evaluate residual stress in areas with a diameter of 0.2 mm or less in a stainless steel with average grain size of 7 μm. The 2D method was further applied to assess residual stress in the stainless steel after treatment by laser cavitation peening (LCP). The diameter of the laser spot used for LCP was about 0.5 mm, and the stainless steel was treated with evenly spaced laser spots at 4 pulses/mm2. The 2D method revealed fluctuations of LCP-induced residual stress at sub-mm scale that are consistent with fluctuations in the height of the peened surface.


2021 ◽  
Author(s):  
Zulkuf Azizoglu ◽  
Zoya Heidari ◽  
Leonardo Goncalves ◽  
Lucas Abreu Blanes De Oliveira ◽  
Moacyr Silva Do Nascimento Neto

Abstract Broadband dielectric dispersion measurements are attractive options for assessment of water-filled pore volume, especially when quantifying salt concentration is challenging. However, conventional models for interpretation of dielectric measurements such as Complex Refractive Index Model (CRIM) and Maxwell Garnett (MG) model require oversimplifying assumptions about pore structure and distribution of constituting fluids/minerals. Therefore, dielectric-based estimates of water saturation are often not reliable in the presence of complex pore structure, rock composition, and rock fabric (i.e., spatial distribution of solid/fluid components). The objectives of this paper are (a) to propose a simple workflow for interpretation of dielectric permittivity measurements in log-scale domain, which takes the impacts of complex pore geometry and distribution of minerals into account, (b) to experimentally verify the reliability of the introduced workflow in the core-scale domain, and (c) to apply the introduced workflow for well-log-based assessment of water saturation. The dielectric permittivity model includes tortuosity-dependent parameters to honor the complexity of the pore structure and rock fabric for interpretation of broadband dielectric dispersion measurements. We estimate tortuosity-dependent parameters for each rock type from dielectric permittivity measurements conducted on core samples. To verify the reliability of dielectric-based water saturation model, we conduct experimental measurements on core plugs taken from a carbonate formation with complex pore structures. We also introduce a workflow for applying the introduced model to dielectric dispersion well logs for depth-by-depth assessment of water saturation. The tortuosity-dependent parameters in log-scale domain can be estimated either via experimental core-scale calibration, well logs in fully water-saturated zones, or pore-scale evaluation in each rock type. The first approach is adopted in this paper. We successfully applied the introduced model on core samples and well logs from a pre-salt formation in Santos Basin. In the core-scale domain, the estimated water saturation using the introduced model resulted in an average relative error of less than 11% (compared to gravimetric measurements). The introduced workflow improved water saturation estimates by 91% compared to CRIM. Results confirmed the reliability of the new dielectric model. In application to well logs, we observed significant improvements in water saturation estimates compared to cases where a conventional effective medium model (i.e., CRIM) was used. The documented results from both core-scale and well-log-scale applications of the introduced method emphasize on the importance of honoring pore structure in the interpretation of dielectric measurements.


Sign in / Sign up

Export Citation Format

Share Document