Effects of Economic Analysis on Re-Development of a Gas Field - Lessons Learned From a Reservoir Simulation Study

2012 ◽  
Author(s):  
Agha Hassan Akram ◽  
Arshad Majeed ◽  
Zaid Ashraf ◽  
Waqar A. Khan ◽  
Shah Abdur Rahman
2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2005 ◽  
Vol 45 (1) ◽  
pp. 45
Author(s):  
J-F. Saint-Marcoux ◽  
C. White ◽  
G.O. Hovde

This paper addresses the feasibility of developing an ultra-deepwater gas field by producing directly from subsea wells into Compressed Natural Gas (CNG) Carrier ships. Production interruptions will be avoided as two Gas Production Storage Shuttle (GPSS) vessels storing CNG switch out roles between producing/storing via one of two Submerged Turret Production (STP) buoys and transport CNG to a remote offloading buoy. This paper considers the challenges associated with a CNG solution for an ultra-deepwater field development and the specific issues related to the risers. A Hybrid Riser Tower (HRT) concept design incorporating the lessons learned from the Girassol experience allows minimisation of the vertical load on the STP buoys. The production switchover system from one GPSS to the other is located at the top of the HRT. High-pressure flexible flowlines with buoyancy connect the flow path at the top of HRT to both STP buoys. System fabrication and installation issues, as well as specific met ocean conditions of the GOM, such as eddy currents, have been addressed. The HRT concept can be also used for tiebacks to floating LNG plants.


1986 ◽  
Vol 26 (1) ◽  
pp. 447
Author(s):  
A.M. Younes ◽  
G.O. Morrell ◽  
A.B. Thompson

The West Kingfish Field in the Gippsland Basin, offshore Victoria, has been developed from the West King-fish platform by Esso Australia Ltd (operator) and BHP Petroleum.The structure is an essentially separate, largely stratigraphic accumulation that forms the western flank of the Kingfish feature. A total of 19 development wells were drilled from the West Kingfish platform between October 1982 and May 1984. Information provided by these wells was used in a West Kingfish post-development geologic study and a reservoir simulation study.As a result of these studies the estimated recoverable oil volume has been increased 55 per cent to 27.0 stock tank gigalitres (170 million stock tank barrels). The studies also formed the technical basis for obtaining new oil classification of the P-1.1 reservoir which is the only sand body that has been found in the Gurnard Formation in the Kingfish area.The simulation study was accomplished with an extremely high level of efficiency due to the extensive and effective use of computer graphics technology in model construction, history matching and predictions.Computer graphics technology has also been used very effectively in presenting the simulation study results in an understandable way to audiences with various backgrounds. A portable microcomputer has been used to store hundreds of graphic displays which are projected with a large screen video projector.Presentations using this new display technology have been well received and have been very successful in conveying the results of a complex reservoir simulation study and in identifying future field development opportunities to audiences with various backgrounds.


Sign in / Sign up

Export Citation Format

Share Document