Risked Based Spatial Geomechanical Model For Chemoporoelastic Wellbore Stability Evaluation

Author(s):  
Bassey Akong ◽  
Friday Otutu ◽  
Adewale Dosunmu
2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


2021 ◽  
Author(s):  
Elena Grishko ◽  
Aboozar Garavand ◽  
Alexey Cheremisin

Abstract Currently, the standard approach to building a geomechanical model for analyzing wellbore stability involves taking into account only elastic deformations. This approach has shown its inconsistency in the design and drilling of wells passing through rocks with pronounced plastic properties. Such rocks are characterized by the fact that when the loads acting on them change, they demonstrate not only elastic, but also plastic (irreversible) deformations. Plastic deformations have an additional impact on the distribution of stresses in the rock of the near-wellbore zone on a qualitative and quantitative level. Since plastic deformations are not taken into account in the standard approach, in this case the results of the wellbore stability analysis are based on incorrectly calculated stresses acting in the rock. As a result, it can lead to misinterpretation of the model for analysis, suboptimal choice of trajectory, incorrect calculation of safe mud window and an incorrectly selected set of measures to reduce the risks of instability. The aim of this work is to demonstrate the advantages of the developed 3D elasto-plastic program for calculating the wellbore stability in comparison with the standard elastic method used in petroleum geomechanics. The central core of the work is the process of initialization of the elasto-plastic model according to the data of core tests and the subsequent validation of experimental and numerical loading curves. The developed 3D program is based on a modified Drucker-Prager model and implemented in a finite element formulation. 3D geomechanical model of wellbore stability allows describing deformation processes in the near-wellbore zone and includes the developed failure criteria. The paper shows a special approach to the determination of the mud window based on well logging data and core tests by taking into account the plastic behavior of rocks. An important result of this study is the determination of the possibility of expanding the mud window when taking into account the plastic criterion of rock failure.


2016 ◽  
Author(s):  
Feifei Zhang ◽  
Yongfeng Kang ◽  
Zhaoyang Wang ◽  
Stefan Miska ◽  
Mengjiao Yu ◽  
...  

2021 ◽  
Author(s):  
Michael Alexander Shaver ◽  
Gilles Pierre Michel Segret ◽  
Denya Pratama Yudhia ◽  
Suhail Mohammed Al Ameri ◽  
Erwan Couziqou ◽  
...  

Abstract Thin layering and micro-fracturing of the thin laminated layers are some possible reasons for the wellbore stability problems of the Nahr Umr shale. If the drilling fluid density is too low, collapsing of the borehole is possible, and if the drilling fluid density is too high, invasion of the shale can occur, weakening the shale, making boreholes prone to instability. These effects can be semi-quantified and assessed through the development of a geomechanical model. The application of a geomechanical model of a reservoir and overlaying formations can be very useful for addressing ways to select a sweet spot and optimize the completion and development of a reservoir. The geomechanical model also provides a sound basis for addressing unforeseen drilling and borehole stability problems that are encountered during the life cycle of a reservoir. Key components of any geomechanical model are the principal stresses at depth: overburden, minimum horizontal principle stress, and maximum horizontal principle stress. These determine the existing tectonic fault regime: normal, strike-slip, and reverse. Additional components of a geomechanical model are pore pressure, unconfined compressive strength (UCS) rock strength, tilted anisotropy, and fracture and faults from image logs and seismic. Unfortunately, models used to make continuous well logging depth-based stress predictions involve some parameters that are derived from laboratory tests, fracture injection tests, and the actual fracturing of a well—all contributing to the uncertainty of the model predictions. This paper addresses ways to obtain these key parameter components of the geomechanical model from well logging data calibrated to ancillary data. It is shown how stress, UCS, and pore pressure prediction and interpretation can be improved by developing and applying models using wellbore acoustic, triple combo, and borehole image data calibrated to laboratory and field measurements. The nahr umr shale and other organic mudstone formations exhibit vertical transverse isotropic (VTI) anisotropy in the sense that rock properties are different in the vertical and horizontal directions (assuming non-tilted flatbed layering), the horizontal acoustic velocity is different from that of vertical velocity. This necessitates the building of anisotropic moduli and stress models. The anisotropic stress models require lateral strain, which as shown in the paper, can be obtained from micro-frac tests and/or borehole breakout data.


2021 ◽  
Author(s):  
Sankhajit Saha ◽  
Prajit Chakrabarti ◽  
Johannes Vossen ◽  
Sourav Mitra ◽  
Tuhin Podder

Abstract This paper discusses the Integrated Role of Geomechanics and Drilling Fluids Design for drilling a well oriented towards the minimum horizontal stress direction in a depleted, yet highly stressed and complex clastic reservoir. There are multiple challenges related to such a well that need to be addressed during the planning phase. In this case, the well needs to be drilled towards the minimum horizontal stress direction (Shmin) to benefit multi-stage hydraulic fracturing. At the same time, the most prominent challenge is that this well orientation is more prone to wellbore failure and requires a maximum mud weight, due to the present strike slip stress environment. Well planning challenges in such an environment include (a) the determination of formation characteristics and rock properties, (b) the anticipation of higher formation collapse pressure during the course of drilling the lateral section within the reservoir, (c) the determination of the upper bound mud weight to prevent lost circulation due to a low fracture gradient against depleted sections, or due to the presence of pre-existing natural fractures, d) mitigating the higher risk of differential sticking against depleted porous layers, and determining appropriate bridging in the drilling fluids, (e) recognizing the prolonged exposure time of the formation due to the length of the lateral and the lower rate of penetration against the tight highly dense formations. For successful drilling, and to mitigate the above risks, the first step is to prepare a predrill GeoMechanical model along with adequate fluid design and drillers action plans to be considered during drilling. Offset well petrophysical logs and core data are considered for the preparation of the predrill GeoMechanical model, along with the drilling experiences in the offset locations. Based on the above, a predrill GeoMechanical model is prepared, a risk matrix is being established, and a representative mud weight window is recommended (Wellbore Stability Analysis). In most cases, the offset well locations considered are vertical- or inclined-, or lateral wells of different trajectory azimuth than the target well location and the predrill GeoMechanical model can incorporate such variations easily; however, any Geology uncertainty, leading to a different rock property- and stress set-up (or even different pore pressure than expected), at the actual well location will be part of the uncertainty of the predrill GeoMechanical model and Wellbore Stability Analysis. This is where the real time monitoring is playing out its full potential: giving an updated model and wellbore stability analysis during drilling. While drilling the lateral section, the wellbore condition is being monitored using LWD (logging while drilling) tools, e.g. Gamma Ray, Density, Neutron, Acoustic Caliper, Azimuthal density image and ECD (equivalent circulating density). While gamma ray helps in determining the lithology, density logs help to understand the formation hardness, and they can be used to generate a calibrated pseudo acoustic log. Based on this pseudo acoustic log, the rock strength and other rock mechanical properties of the pre- GeoMechanical model can be updated as soon as they become available. This gives insight into the model differences and helps to understand model variations and adjust Wellbore Stability recommendations accordingly. While the neutron log helps to determine the zones of high porosity, and thus potential risk zones for differential sticking, the azimuthal density image clearly indicates the breakout zones caused by the shear failure of the wellbore. The presence of wellbore failure (breakout) is further confirmed by acoustic caliper data, and accordingly wellbore stability related recommendations are communicated to the operator, for an increase in the specific gravity of the mud, and thus, to balance the wellbore. From a mud rheology perspective, high performance OBM (oil-based mud) parameters are maintained consistent with the formation properties, to minimize fluid loss, optimize wellbore strengthening characteristics and minimize at the same time solids concentrations in order to avoid excessive ECD (equivalent circulating density) which may open pre-existing natural fractures resulting in downhole losses and in consequence might lead to differential sticking. In the case study presented herein, the proactive implementation of GeoMechanics and its Wellbore Stability application as well as the integration of drilling fluids services, resulted in the smooth and successful drilling of the lateral section, and also in the delivery of an in gauge hole necessary for multi-stage fracturing (MSF) completion optimization.


2000 ◽  
Author(s):  
T. Finkbeiner ◽  
D. Moos ◽  
W. DeRose ◽  
D. Shiflett

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1117 ◽  
Author(s):  
Majia Zheng ◽  
Hongming Tang ◽  
Hu Li ◽  
Jian Zheng ◽  
Cui Jing

The abundant reserve of shale gas in Sichuan Basin has become a significant natural gas component in China. To achieve efficient development of shale gas, it is necessary to analyze the stress state, pore pressure, and reservoir mechanical properties such that an accurate geomechanical model can be established. In this paper, Six wells of Neijiang-Dazu and North Rongchang (NDNR) Block were thoroughly investigated to establish the geomechanical model for the study area. The well log analysis was performed to derive the in-situ stresses and pore pressure while the stress polygon was applied to constrain the value of the maximum horizontal principal stress. Image and caliper data, mini-frac test and laboratory rock mechanics test results were used to calibrate the geomechanical model. The model was further validated by comparing the model prediction against the actual wellbore failure observed in the field. It was found that it is associated with the strike-slip (SS) stress regime; the orientation of SHmax was inferred to be 106–130° N. The pore pressure appears to be approximately hydrostatic from the surface to 1000 m true vertical depth (TVD), but then becomes over-pressured from the Xujiahe formation. The geomechanical model can provide guidance for the subsequent drilling and completion in this area and be used to effectively avoid complex drilling events such as collapse, kick, and lost circulation (mud losses) along the entire well. Also, the in-situ stress and pore pressure database can be used to analyze wellbore stability issues as well as help design hydraulic fracturing operations.


Sign in / Sign up

Export Citation Format

Share Document