Influence of Rock Plastic Behavior on the Wellbore Stability

2021 ◽  
Author(s):  
Elena Grishko ◽  
Aboozar Garavand ◽  
Alexey Cheremisin

Abstract Currently, the standard approach to building a geomechanical model for analyzing wellbore stability involves taking into account only elastic deformations. This approach has shown its inconsistency in the design and drilling of wells passing through rocks with pronounced plastic properties. Such rocks are characterized by the fact that when the loads acting on them change, they demonstrate not only elastic, but also plastic (irreversible) deformations. Plastic deformations have an additional impact on the distribution of stresses in the rock of the near-wellbore zone on a qualitative and quantitative level. Since plastic deformations are not taken into account in the standard approach, in this case the results of the wellbore stability analysis are based on incorrectly calculated stresses acting in the rock. As a result, it can lead to misinterpretation of the model for analysis, suboptimal choice of trajectory, incorrect calculation of safe mud window and an incorrectly selected set of measures to reduce the risks of instability. The aim of this work is to demonstrate the advantages of the developed 3D elasto-plastic program for calculating the wellbore stability in comparison with the standard elastic method used in petroleum geomechanics. The central core of the work is the process of initialization of the elasto-plastic model according to the data of core tests and the subsequent validation of experimental and numerical loading curves. The developed 3D program is based on a modified Drucker-Prager model and implemented in a finite element formulation. 3D geomechanical model of wellbore stability allows describing deformation processes in the near-wellbore zone and includes the developed failure criteria. The paper shows a special approach to the determination of the mud window based on well logging data and core tests by taking into account the plastic behavior of rocks. An important result of this study is the determination of the possibility of expanding the mud window when taking into account the plastic criterion of rock failure.

Author(s):  
Nadezhda A. Liadova ◽  
◽  
Pavel I. Klykov ◽  
Andrei A. Predein ◽  
◽  
...  

Geomechanical modeling aims at solving problems associated with ensuring accident-free well drilling. The paper deals with building a numerical 3D geomechanical model for a studied field with a further production well stability computation. The region of operations is located in the Baltic Sea shelf. Apart from the field summary, the study contains results of acquisition and audit of initial data for modeling. The method is discussed for unidimensional geomechanical modeling on key wells, including determination of dynamic and static elasticity and strength of the rock varieties, computations of pore pressure, vertical and horizontal stresses. Well stability computations have been obtained and analyzed on the basis of the findings of 1D geomechanical modeling. A further analysis deals with the results of 3D geomechanical modeling, i.e. determination of boundaries and building a structural framework of the model, geometry testing, filling the grid with mechanical properties, and computation of complete stress tensor using the finite element method (FEM). Results of the 1D- and 3D-modeling have been compared. Thus, a numerical 3D geomechanical model has been built for the field under study. The following stage of works was focused on the wellbore stability computation for the planned wells. Additionally, computation was performed for drilling mud absorption pressure gradient cubes, caving pressure, and rock hydraulic fracturing pressure at different inclination angles and drilling azimuths. Recommendations were developed for accident-free construction of wells in the field under study, including upkeep and update of the geomechanical model in real time during drilling of wells. The obtained results and techniques can be used in design and construction of wells in other fields though taking into account regional specifics.


2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


2005 ◽  
Vol 72 (5) ◽  
pp. 738-743 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Chung-Ming Tan

This paper develops a nonlinear finite element formulation to analyze nanoindentation using an atomistic approach, which is conducive to observing the deformation mechanisms associated with the nanoindentation cycle. The simulation results of the current modified finite element formulation indicate that the microscopic plastic deformations of the thin film are caused by instabilities of the crystalline structure, and that the commonly used procedure for estimating the contact area in nanoindentation testing is invalid when the indentation size falls in the nanometer regime.


Author(s):  
Nubia Aurora González Molano ◽  
José Alvarellos Iglesias ◽  
Pablo Enrique Vargas Mendoza ◽  
M. R. Lakshmikantha

Several wellbore instability problems have been encountered during drilling a shale formation in an offshore field, leading to the collapse of the main borehole and resulting in several sidetracks. In this study, an integrated 1D & 3D Geomechanical model was built for the field in order to investigate the major factors that control the instability problems from a Geomechanical point of view and to design an optimum mud window for planned wells in the field. Effect of bedding on wellbore stability was the most important factor to explain the observed drilling events. Optimized well paths for planned wells were proposed based on results of a sensitivity analysis of the effect of bedding orientation on wellbore stability. It has been observed that bedding exposed depends not only on well inclination but also on dip of the formation, attack angle, and azimuth.


The results of experimental studies of masonry on the action of dynamic and static (short-term and long-term) loads are presented. The possibility of plastic deformations in the masonry is analyzed for different types of force effects. The falsity of the proposed approach to the estimation of the coefficient of plasticity of masonry, taking into account the ratio of elastic and total deformations of the masonry is noted. The study of the works of Soviet scientists revealed that the masonry under the action of seismic loads refers to brittle materials in the complete absence of plastic properties in it in the process of instantaneous application of forces. For the cases of uniaxial and plane stress states of the masonry, data on the coefficient of plasticity obtained from the experiment are presented. On the basis of experimental studies the influence of the strength of the so-called base materials (brick, mortar) on the bearing capacity of the masonry, regardless of the nature of the application of forces and the type of its stress state, is noted. The analysis of works of prof. S. V. Polyakov makes it possible to draw a conclusion that at the long application of the load, characteristic for the masonry are not plastic deformations, but creep deformations. It is shown that the proposals of some authors on the need to reduce the level of adhesion of the mortar to the brick for the masonry erected in earthquake-prone regions in order to improve its plastic properties are erroneous both from the structural point of view and from the point of view of ensuring the seismic resistance of structures. It is noted that the proposal to assess the plasticity of the masonry of ceramic brick walls and large-format ceramic stone with a voidness of more than 20% is incorrect, and does not meet the work of the masonry of hollow material. On the basis of the analysis of a large number of research works it is concluded about the fragile work of masonry.


2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Sergey Mihailovich Karpukhin ◽  
Konstantin Urjevich Ruban ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev

Abstract The design features and the need to use a water-based solution make the task of ensuring trouble-free drilling of vertical wells non-trivial. This work is an example of an interdisciplinary approach to the analysis of the mechanisms of instability of the wellbore. Instability can be caused by a complex of reasons, in this case, standard geomechanical calculations are not enough to solve the problem. Engineering calculations and laboratory chemical studies are integrated into the process of geomechanical modeling. The recommendations developed in all three areas are interdependent and inseparable from each other. To achieve good results, it is necessary to comply with a set of measures at the same time. The key tasks of the project were: determination of drilling density, tripping the pipe conditions, parameters of the drilling fluid rheology, selection of a system for the best inhibition of clay swelling.


2018 ◽  
Vol 876 ◽  
pp. 181-186
Author(s):  
Son Tung Pham

Sand production is a complicated physical process depending on rock mechanical properties and flow of fluid in the reservoir. When it comes to sand production phenomenon, many researchers applied the Geomechanical model to predict the pressure for the onset of sand production in the reservoir. However, the mass of produced sand is difficult to determine due to the complexity of rock behavior as well as fluid behavior in porous media. In order to solve this problem, there are some Hydro – Mechanical models that can evaluate sand production rate. As these models require input parameters obtained by core analysis and use a large empirical correlation, they are still not used popularly because of the diversity of reservoirs behavior in the world. In addition, the reliability of these models is still in question because no comparison between these empirical models has been studied. The onset of sand production is estimated using the bottomhole pressure that makes the maximum effective tangential compressive stress equal or higher than the rock strength (failure criteria), which is usually known as critical bottomhole pressure (CBHP). Combining with Hydro – Mechanical model, the main objective of this work aims to develop a numerical model that can solve the complexity of the governing equations relating to sand production. The outcome of this study depicts sand production rate versus time as well as the change of porosity versus space and time. In this paper, the Geomechanical model coupled with Hydro – Mechanical model is applied to calibrate the empirical parameters.


2014 ◽  
Vol 6 (15) ◽  
pp. 5610-5614 ◽  
Author(s):  
Mohamed Attya ◽  
Leonardo Di Donna ◽  
Fabio Mazzotti ◽  
Alessia Fazio ◽  
Bartolo Gabriele ◽  
...  

A new methodology for the determination of ochratoxin A (OTA) was developed using a diastereoisomeric internal standard approach and HPLC-FLD.


2018 ◽  
Vol 196 ◽  
pp. 01014 ◽  
Author(s):  
Avgustina Astakhova

The paper focuses on the model of calculation of thin isotropic shells beyond the elastic limit. The determination of the stress-strain state of thin shells is based on the small elastic-plastic deformations theory and the elastic solutions method. In the present work the building of the solution based on the equilibrium equations and geometric relations of linear theory of thin shells in curved coordinate system α and β, and the relations between deformations and forces based on the Hirchhoff-Lave hypothesis and the small elastic-plastic deformations theory are presented. Internal forces tensor is presented in the form of its expansion to the elasticity tensor and the additional terms tensor expressed the physical nonlinearity of the problem. The functions expressed the physical nonlinearity of the material are determined. The relations that allow to determine the range of elastic-plastic deformations on the surface of the present shell and their changing in shell thickness are presented. The examples of the calculation demonstrate the convergence of elastic-plastic deformations method and the range of elastic-plastic deformations in thickness in the spherical shell. Spherical shells with the angle of half-life regarding 90 degree vertical symmetry axis under the action of equally distributed ring loads are observed.


Sign in / Sign up

Export Citation Format

Share Document